Mercurial > repos > public > sbplib
view +time/CdiffImplicit.m @ 774:66eb4a2bbb72 feature/grids
Remove default scaling of the system.
The scaling doens't seem to help actual solutions. One example that fails in the flexural code.
With large timesteps the solutions seems to blow up. One particular example is profilePresentation
on the tdb_presentation_figures branch with k = 0.0005
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 18 Jul 2018 15:42:52 -0700 |
parents | d5bce13ece23 |
children | d6ede7f5cbf9 |
line wrap: on
line source
classdef CdiffImplicit < time.Timestepper properties A, B, C, G AA, BB, CC k t v, v_prev n % LU factorization L,U,p,q end methods % Solves % A*u_tt + B*u + C*v_t = G(t) % u(t0) = f1 % u_t(t0) = f2 % starting at time t0 with timestep k function obj = CdiffImplicit(A, B, C, G, f1, f2, k, t0) default_arg('A', []); default_arg('C', []); default_arg('G', []); default_arg('f1', 0); default_arg('f2', 0); default_arg('t0', 0); m = size(B,1); if isempty(A) A = speye(m); end if isempty(C) C = sparse(m,m); end if isempty(G) G = @(t) sparse(m,1); end if isempty(f1) f1 = sparse(m,1); end if isempty(f2) f2 = sparse(m,1); end obj.A = A; obj.B = B; obj.C = C; obj.G = G; AA = 1/k^2*A + 1/2*B + 1/(2*k)*C; BB = -2/k^2*A; CC = 1/k^2*A + 1/2*B - 1/(2*k)*C; % AA*v_next + BB*v + CC*v_prev == G(t_n) obj.AA = AA; obj.BB = BB; obj.CC = CC; v_prev = f1; I = speye(m); % v = (1/k^2*A)\((1/k^2*A - 1/2*B)*f1 + (1/k*I - 1/2*C)*f2 + 1/2*G(0)); v = f1 + k*f2; if ~issparse(A) || ~issparse(B) || ~issparse(C) error('LU factorization with full pivoting only works for sparse matrices.') end [L,U,p,q] = lu(AA,'vector'); obj.L = L; obj.U = U; obj.p = p; obj.q = q; obj.k = k; obj.t = t0+k; obj.n = 1; obj.v = v; obj.v_prev = v_prev; end function [v,t] = getV(obj) v = obj.v; t = obj.t; end function [vt,t] = getVt(obj) % Calculate next time step to be able to do centered diff. v_next = zeros(size(obj.v)); b = obj.G(obj.t) - obj.BB*obj.v - obj.CC*obj.v_prev; y = obj.L\b(obj.p); z = obj.U\y; v_next(obj.q) = z; vt = (v_next-obj.v_prev)/(2*obj.k); t = obj.t; end function obj = step(obj) b = obj.G(obj.t) - obj.BB*obj.v - obj.CC*obj.v_prev; obj.v_prev = obj.v; % % Backslash % obj.v = obj.AA\b; % LU with column pivot y = obj.L\b(obj.p); z = obj.U\y; obj.v(obj.q) = z; % Update time obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end end %%% Derivation % syms A B C G % syms n k % syms f1 f2 % v = symfun(sym('v(n)'),n); % d = A/k^2 * (v(n+1) - 2*v(n) +v(n-1)) + B/2*(v(n+1)+v(n-1)) + C/(2*k)*(v(n+1) - v(n-1)) == G % ic1 = v(0) == f1 % ic2 = A/k*(v(1)-f1) + k/2*(B*f1 + C*f2 - G) - f2 == 0 % c = collect(d, [v(n) v(n-1) v(n+1)]) % (-(2*A)/k^2)*v(n) + (B/2 + A/k^2 - C/(2*k))*v(n - 1) + (B/2 + A/k^2 + C/(2*k))*v(n + 1) == G % syms AA BB CC % % AA = B/2 + A/k^2 + C/(2*k) % % BB = -(2*A)/k^2 % % CC = B/2 + A/k^2 - C/(2*k) % s = subs(c, [B/2 + A/k^2 + C/(2*k), -(2*A)/k^2, B/2 + A/k^2 - C/(2*k)], [AA, BB, CC]) % ic2_a = collect(ic2, [v(1) f1 f2]) % (A/k)*v(1) + ((B*k)/2 - A/k)*f1 + ((C*k)/2 - 1)*f2 - (G*k)/2 == 0