view +scheme/Wave2d.m @ 774:66eb4a2bbb72 feature/grids

Remove default scaling of the system. The scaling doens't seem to help actual solutions. One example that fails in the flexural code. With large timesteps the solutions seems to blow up. One particular example is profilePresentation on the tdb_presentation_figures branch with k = 0.0005
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 18 Jul 2018 15:42:52 -0700
parents a8ed986fcf57
children 459eeb99130f
line wrap: on
line source

classdef Wave2d < scheme.Scheme
    properties
        m % Number of points in each direction, possibly a vector
        h % Grid spacing
        x,y % Grid
        X,Y % Values of x and y for each grid point
        order % Order accuracy for the approximation

        D % non-stabalized scheme operator
        M % Derivative norm
        alpha

        H % Discrete norm
        Hi
        H_x, H_y % Norms in the x and y directions
        Hx,Hy % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
        Hi_x, Hi_y
        Hix, Hiy
        e_w, e_e, e_s, e_n
        d1_w, d1_e, d1_s, d1_n
        gamm_x, gamm_y
    end

    methods
        function obj = Wave2d(m,lim,order,alpha)
            default_arg('alpha',1);

            xlim = lim{1};
            ylim = lim{2};

            if length(m) == 1
                m = [m m];
            end

            m_x = m(1);
            m_y = m(2);

            [x, h_x] = util.get_grid(xlim{:},m_x);
            [y, h_y] = util.get_grid(ylim{:},m_y);

            ops_x = sbp.Ordinary(m_x,h_x,order);
            ops_y = sbp.Ordinary(m_y,h_y,order);

            I_x = speye(m_x);
            I_y = speye(m_y);

            D2_x = sparse(ops_x.derivatives.D2);
            H_x =  sparse(ops_x.norms.H);
            Hi_x = sparse(ops_x.norms.HI);
            M_x =  sparse(ops_x.norms.M);
            e_l_x = sparse(ops_x.boundary.e_1);
            e_r_x = sparse(ops_x.boundary.e_m);
            d1_l_x = sparse(ops_x.boundary.S_1);
            d1_r_x = sparse(ops_x.boundary.S_m);

            D2_y = sparse(ops_y.derivatives.D2);
            H_y =  sparse(ops_y.norms.H);
            Hi_y = sparse(ops_y.norms.HI);
            M_y =  sparse(ops_y.norms.M);
            e_l_y = sparse(ops_y.boundary.e_1);
            e_r_y = sparse(ops_y.boundary.e_m);
            d1_l_y = sparse(ops_y.boundary.S_1);
            d1_r_y = sparse(ops_y.boundary.S_m);

            D2 = kr(D2_x, I_y) + kr(I_x, D2_y);
            obj.H = kr(H_x,H_y);
            obj.Hx  = kr(H_x,I_y);
            obj.Hy  = kr(I_x,H_y);
            obj.Hix = kr(Hi_x,I_y);
            obj.Hiy = kr(I_x,Hi_y);
            obj.Hi = kr(Hi_x,Hi_y);
            obj.M = kr(M_x,H_y)+kr(H_x,M_y);
            obj.e_w  = kr(e_l_x,I_y);
            obj.e_e  = kr(e_r_x,I_y);
            obj.e_s  = kr(I_x,e_l_y);
            obj.e_n  = kr(I_x,e_r_y);
            obj.d1_w = kr(d1_l_x,I_y);
            obj.d1_e = kr(d1_r_x,I_y);
            obj.d1_s = kr(I_x,d1_l_y);
            obj.d1_n = kr(I_x,d1_r_y);

            obj.m = m;
            obj.h = [h_x h_y];
            obj.order = order;

            obj.alpha = alpha;
            obj.D = alpha*D2;
            obj.x = x;
            obj.y = y;
            obj.X = kr(x,ones(m_y,1));
            obj.Y = kr(ones(m_x,1),y);

            obj.gamm_x = h_x*ops_x.borrowing.M.S;
            obj.gamm_y = h_y*ops_y.borrowing.M.S;
        end


        % Closure functions return the opertors applied to the own doamin to close the boundary
        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition if there are several.
        %       data                is a function returning the data that should be applied at the boundary.
        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
        %       neighbour_boundary  is a string specifying which boundary to interface to.
        function [closure, penalty] = boundary_condition(obj,boundary,type,data)
            default_arg('type','neumann');
            default_arg('data',0);

            [e,d,s,gamm,halfnorm_inv] = obj.get_boundary_ops(boundary);

            switch type
                % Dirichlet boundary condition
                case {'D','d','dirichlet'}
                    alpha = obj.alpha;

                    % tau1 < -alpha^2/gamma
                    tuning = 1.1;
                    tau1 = -tuning*alpha/gamm;
                    tau2 =  s*alpha;

                    p = tau1*e + tau2*d;

                    closure = halfnorm_inv*p*e';

                    pp = halfnorm_inv*p;
                    switch class(data)
                        case 'double'
                            penalty = pp*data;
                        case 'function_handle'
                            penalty = @(t)pp*data(t);
                        otherwise
                            error('Wierd data argument!')
                    end


                % Neumann boundary condition
                case {'N','n','neumann'}
                    alpha = obj.alpha;
                    tau1 = -s*alpha;
                    tau2 = 0;
                    tau = tau1*e + tau2*d;

                    closure = halfnorm_inv*tau*d';

                    pp = halfnorm_inv*tau;
                    switch class(data)
                        case 'double'
                            penalty = pp*data;
                        case 'function_handle'
                            penalty = @(t)pp*data(t);
                        otherwise
                            error('Wierd data argument!')
                    end

                % Unknown, boundary condition
                otherwise
                    error('No such boundary condition: type = %s',type);
            end
        end

        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
            % u denotes the solution in the own domain
            % v denotes the solution in the neighbour domain
            [e_u,d_u,s_u,gamm_u, halfnorm_inv] = obj.get_boundary_ops(boundary);
            [e_v,d_v,s_v,gamm_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary);

            tuning = 1.1;

            alpha_u = obj.alpha;
            alpha_v = neighbour_scheme.alpha;

            % tau1 < -(alpha_u/gamm_u + alpha_v/gamm_v)

            tau1 = -(alpha_u/gamm_u + alpha_v/gamm_v) * tuning;
            tau2 = s_u*1/2*alpha_u;
            sig1 = s_u*(-1/2);
            sig2 = 0;

            tau = tau1*e_u + tau2*d_u;
            sig = sig1*e_u + sig2*d_u;

            closure = halfnorm_inv*( tau*e_u' + sig*alpha_u*d_u');
            penalty = halfnorm_inv*(-tau*e_v' - sig*alpha_v*d_v');
        end

        % Ruturns the boundary ops and sign for the boundary specified by the string boundary.
        % The right boundary is considered the positive boundary
        function [e,d,s,gamm, halfnorm_inv] = get_boundary_ops(obj,boundary)
            switch boundary
                case 'w'
                    e = obj.e_w;
                    d = obj.d1_w;
                    s = -1;
                    gamm = obj.gamm_x;
                    halfnorm_inv = obj.Hix;
                case 'e'
                    e = obj.e_e;
                    d = obj.d1_e;
                    s = 1;
                    gamm = obj.gamm_x;
                    halfnorm_inv = obj.Hix;
                case 's'
                    e = obj.e_s;
                    d = obj.d1_s;
                    s = -1;
                    gamm = obj.gamm_y;
                    halfnorm_inv = obj.Hiy;
                case 'n'
                    e = obj.e_n;
                    d = obj.d1_n;
                    s = 1;
                    gamm = obj.gamm_y;
                    halfnorm_inv = obj.Hiy;
                otherwise
                    error('No such boundary: boundary = %s',boundary);
            end
        end

        function N = size(obj)
            N = prod(obj.m);
        end

    end

    methods(Static)
        % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u
        % and bound_v of scheme schm_v.
        %   [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l')
        function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v)
            [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v);
            [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u);
        end
    end
end