Mercurial > repos > public > sbplib
view +scheme/Utux.m @ 774:66eb4a2bbb72 feature/grids
Remove default scaling of the system.
The scaling doens't seem to help actual solutions. One example that fails in the flexural code.
With large timesteps the solutions seems to blow up. One particular example is profilePresentation
on the tdb_presentation_figures branch with k = 0.0005
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 18 Jul 2018 15:42:52 -0700 |
parents | 05947fc2505c |
children | 324c927d8b1d 38c3da9675a5 |
line wrap: on
line source
classdef Utux < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing x % Grid order % Order accuracy for the approximation H % Discrete norm D D1 Hi e_l e_r v0 end methods function obj = Utux(m,xlim,order,operator) default_arg('a',1); %Old operators % [x, h] = util.get_grid(xlim{:},m); %ops = sbp.Ordinary(m,h,order); switch operator case 'NonEquidistant' ops = sbp.D1Nonequidistant(m,xlim,order); obj.D1 = ops.D1; case 'Standard' ops = sbp.D2Standard(m,xlim,order); obj.D1 = ops.D1; case 'Upwind' ops = sbp.D1Upwind(m,xlim,order); obj.D1 = ops.Dm; otherwise error('Unvalid operator') end obj.x=ops.x; obj.H = ops.H; obj.Hi = ops.HI; obj.e_l = ops.e_l; obj.e_r = ops.e_r; obj.D=obj.D1; obj.m = m; obj.h = ops.h; obj.order = order; obj.x = ops.x; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type,data) default_arg('type','neumann'); default_arg('data',0); tau =-1*obj.e_l; closure = obj.Hi*tau*obj.e_l'; penalty = 0*obj.e_l; end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) error('An interface function does not exist yet'); end function N = size(obj) N = obj.m; end end methods(Static) % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u % and bound_v of scheme schm_v. % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); end end end