Mercurial > repos > public > sbplib
view +sbp/D1Gauss.m @ 774:66eb4a2bbb72 feature/grids
Remove default scaling of the system.
The scaling doens't seem to help actual solutions. One example that fails in the flexural code.
With large timesteps the solutions seems to blow up. One particular example is profilePresentation
on the tdb_presentation_figures branch with k = 0.0005
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 18 Jul 2018 15:42:52 -0700 |
parents | e1d11b6a68d8 |
children |
line wrap: on
line source
classdef D1Gauss < sbp.OpSet % Diagonal-norm SBP operators based on the Gauss quadrature formula % with m nodes, which is of degree 2m-1. Hence, The operator D1 is % accurate of order m. properties D1 % SBP operator approximating first derivative H % Norm matrix HI % H^-1 Q % Skew-symmetric matrix e_l % Left boundary operator e_r % Right boundary operator m % Number of grid points. h % Step size x % grid borrowing % Struct with borrowing limits for different norm matrices end methods function obj = D1Gauss(m,lim) x_l = lim{1}; x_r = lim{2}; L = x_r-x_l; switch m case 4 [obj.D1,obj.H,obj.x,obj.h,obj.e_l,obj.e_r] = ... sbp.implementations.d1_gauss_4(L); otherwise error('Invalid number of points: %d.', m); end obj.x = obj.x + x_l; obj.HI = inv(obj.H); obj.Q = obj.H*obj.D1 - obj.e_r*obj.e_r' + obj.e_l*obj.e_l'; obj.borrowing = []; end function str = string(obj) str = [class(obj) '_' num2str(obj.order)]; end end end