view +sbp/+implementations/d1_noneq_8.m @ 774:66eb4a2bbb72 feature/grids

Remove default scaling of the system. The scaling doens't seem to help actual solutions. One example that fails in the flexural code. With large timesteps the solutions seems to blow up. One particular example is profilePresentation on the tdb_presentation_figures branch with k = 0.0005
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 18 Jul 2018 15:42:52 -0700
parents f7ac3cd6eeaa
children 4cb627c7fb90
line wrap: on
line source

function [D1,H,x,h] = d1_noneq_8(N,L)

% L: Domain length
% N: Number of grid points
if(nargin < 2)
    L = 1;
end

if(N<16)
    error('Operator requires at least 16 grid points');
end

% BP: Number of boundary points
% m:  Number of nonequidistant spacings
% order: Accuracy of interior stencil
BP = 8;
m = 4;
order = 8;

%%%% Non-equidistant grid points %%%%%
x0 =  0.0000000000000e+00;
x1 =  3.8118550247622e-01;
x2 =  1.1899550868338e+00;
x3 =  2.2476300175641e+00;
x4 =  3.3192851303204e+00;
x5 =  4.3192851303204e+00;
x6 =  5.3192851303204e+00;
x7 =  6.3192851303204e+00;
x8 =  7.3192851303204e+00;

xb = sparse(m+1,1);
for i = 0:m
    xb(i+1) = eval(['x' num2str(i)]);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Compute h %%%%%%%%%%
h = L/(2*xb(end) + N-1-2*m);
%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Define grid %%%%%%%%
x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ];
%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Norm matrix %%%%%%%%
P = sparse(BP,1);
%#ok<*NASGU>
P0 =  1.0758368078310e-01;
P1 =  6.1909685107891e-01;
P2 =  9.6971176519117e-01;
P3 =  1.1023441350947e+00;
P4 =  1.0244688965833e+00;
P5 =  9.9533550116831e-01;
P6 =  1.0008236941028e+00;
P7 =  9.9992060631812e-01;

for i = 0:BP-1
    P(i+1) = eval(['P' num2str(i)]);
end

H = ones(N,1);
H(1:BP) = P;
H(end-BP+1:end) = flip(P);
H = spdiags(h*H,0,N,N);
%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Q matrix %%%%%%%%%%%

% interior stencil
switch order
    case 2
        d = [-1/2,0,1/2];
    case 4
        d = [1/12,-2/3,0,2/3,-1/12];
    case 6
        d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60];
    case 8
        d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280];
    case 10
        d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260];
    case 12
        d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544];
end
d = repmat(d,N,1);
Q = spdiags(d,-order/2:order/2,N,N);

% Boundaries
Q0_0 = -5.0000000000000e-01;
Q0_1 =  6.7284756079369e-01;
Q0_2 = -2.5969732837062e-01;
Q0_3 =  1.3519390385721e-01;
Q0_4 = -6.9678474730984e-02;
Q0_5 =  2.6434024071371e-02;
Q0_6 = -5.5992311465618e-03;
Q0_7 =  4.9954552590464e-04;
Q0_8 =  0.0000000000000e+00;
Q0_9 =  0.0000000000000e+00;
Q0_10 =  0.0000000000000e+00;
Q0_11 =  0.0000000000000e+00;
Q1_0 = -6.7284756079369e-01;
Q1_1 =  0.0000000000000e+00;
Q1_2 =  9.4074021172233e-01;
Q1_3 = -4.0511642426516e-01;
Q1_4 =  1.9369192209331e-01;
Q1_5 = -6.8638079843479e-02;
Q1_6 =  1.3146457241484e-02;
Q1_7 = -9.7652615479254e-04;
Q1_8 =  0.0000000000000e+00;
Q1_9 =  0.0000000000000e+00;
Q1_10 =  0.0000000000000e+00;
Q1_11 =  0.0000000000000e+00;
Q2_0 =  2.5969732837062e-01;
Q2_1 = -9.4074021172233e-01;
Q2_2 =  0.0000000000000e+00;
Q2_3 =  9.4316393361096e-01;
Q2_4 = -3.5728039257451e-01;
Q2_5 =  1.1266686855013e-01;
Q2_6 = -1.8334941452280e-02;
Q2_7 =  8.2741521740941e-04;
Q2_8 =  0.0000000000000e+00;
Q2_9 =  0.0000000000000e+00;
Q2_10 =  0.0000000000000e+00;
Q2_11 =  0.0000000000000e+00;
Q3_0 = -1.3519390385721e-01;
Q3_1 =  4.0511642426516e-01;
Q3_2 = -9.4316393361096e-01;
Q3_3 =  0.0000000000000e+00;
Q3_4 =  8.7694387866575e-01;
Q3_5 = -2.4698058719506e-01;
Q3_6 =  4.7291642094198e-02;
Q3_7 = -4.0135203618880e-03;
Q3_8 =  0.0000000000000e+00;
Q3_9 =  0.0000000000000e+00;
Q3_10 =  0.0000000000000e+00;
Q3_11 =  0.0000000000000e+00;
Q4_0 =  6.9678474730984e-02;
Q4_1 = -1.9369192209331e-01;
Q4_2 =  3.5728039257451e-01;
Q4_3 = -8.7694387866575e-01;
Q4_4 =  0.0000000000000e+00;
Q4_5 =  8.1123946853807e-01;
Q4_6 = -2.0267150541446e-01;
Q4_7 =  3.8680398901392e-02;
Q4_8 = -3.5714285714286e-03;
Q4_9 =  0.0000000000000e+00;
Q4_10 =  0.0000000000000e+00;
Q4_11 =  0.0000000000000e+00;
Q5_0 = -2.6434024071371e-02;
Q5_1 =  6.8638079843479e-02;
Q5_2 = -1.1266686855013e-01;
Q5_3 =  2.4698058719506e-01;
Q5_4 = -8.1123946853807e-01;
Q5_5 =  0.0000000000000e+00;
Q5_6 =  8.0108544742793e-01;
Q5_7 = -2.0088756283071e-01;
Q5_8 =  3.8095238095238e-02;
Q5_9 = -3.5714285714286e-03;
Q5_10 =  0.0000000000000e+00;
Q5_11 =  0.0000000000000e+00;
Q6_0 =  5.5992311465618e-03;
Q6_1 = -1.3146457241484e-02;
Q6_2 =  1.8334941452280e-02;
Q6_3 = -4.7291642094198e-02;
Q6_4 =  2.0267150541446e-01;
Q6_5 = -8.0108544742793e-01;
Q6_6 =  0.0000000000000e+00;
Q6_7 =  8.0039405922650e-01;
Q6_8 = -2.0000000000000e-01;
Q6_9 =  3.8095238095238e-02;
Q6_10 = -3.5714285714286e-03;
Q6_11 =  0.0000000000000e+00;
Q7_0 = -4.9954552590464e-04;
Q7_1 =  9.7652615479254e-04;
Q7_2 = -8.2741521740941e-04;
Q7_3 =  4.0135203618880e-03;
Q7_4 = -3.8680398901392e-02;
Q7_5 =  2.0088756283071e-01;
Q7_6 = -8.0039405922650e-01;
Q7_7 =  0.0000000000000e+00;
Q7_8 =  8.0000000000000e-01;
Q7_9 = -2.0000000000000e-01;
Q7_10 =  3.8095238095238e-02;
Q7_11 = -3.5714285714286e-03;
for i = 1:BP
    for j = 1:BP
        Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]);
        Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]);
    end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Difference operator %%
D1 = H\Q;
%%%%%%%%%%%%%%%%%%%%%%%%%%%