Mercurial > repos > public > sbplib
view +sbp/+implementations/d1_noneq_8.m @ 774:66eb4a2bbb72 feature/grids
Remove default scaling of the system.
The scaling doens't seem to help actual solutions. One example that fails in the flexural code.
With large timesteps the solutions seems to blow up. One particular example is profilePresentation
on the tdb_presentation_figures branch with k = 0.0005
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 18 Jul 2018 15:42:52 -0700 |
parents | f7ac3cd6eeaa |
children | 4cb627c7fb90 |
line wrap: on
line source
function [D1,H,x,h] = d1_noneq_8(N,L) % L: Domain length % N: Number of grid points if(nargin < 2) L = 1; end if(N<16) error('Operator requires at least 16 grid points'); end % BP: Number of boundary points % m: Number of nonequidistant spacings % order: Accuracy of interior stencil BP = 8; m = 4; order = 8; %%%% Non-equidistant grid points %%%%% x0 = 0.0000000000000e+00; x1 = 3.8118550247622e-01; x2 = 1.1899550868338e+00; x3 = 2.2476300175641e+00; x4 = 3.3192851303204e+00; x5 = 4.3192851303204e+00; x6 = 5.3192851303204e+00; x7 = 6.3192851303204e+00; x8 = 7.3192851303204e+00; xb = sparse(m+1,1); for i = 0:m xb(i+1) = eval(['x' num2str(i)]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Compute h %%%%%%%%%% h = L/(2*xb(end) + N-1-2*m); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Define grid %%%%%%%% x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Norm matrix %%%%%%%% P = sparse(BP,1); %#ok<*NASGU> P0 = 1.0758368078310e-01; P1 = 6.1909685107891e-01; P2 = 9.6971176519117e-01; P3 = 1.1023441350947e+00; P4 = 1.0244688965833e+00; P5 = 9.9533550116831e-01; P6 = 1.0008236941028e+00; P7 = 9.9992060631812e-01; for i = 0:BP-1 P(i+1) = eval(['P' num2str(i)]); end H = ones(N,1); H(1:BP) = P; H(end-BP+1:end) = flip(P); H = spdiags(h*H,0,N,N); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Q matrix %%%%%%%%%%% % interior stencil switch order case 2 d = [-1/2,0,1/2]; case 4 d = [1/12,-2/3,0,2/3,-1/12]; case 6 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; case 8 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; case 10 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; case 12 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; end d = repmat(d,N,1); Q = spdiags(d,-order/2:order/2,N,N); % Boundaries Q0_0 = -5.0000000000000e-01; Q0_1 = 6.7284756079369e-01; Q0_2 = -2.5969732837062e-01; Q0_3 = 1.3519390385721e-01; Q0_4 = -6.9678474730984e-02; Q0_5 = 2.6434024071371e-02; Q0_6 = -5.5992311465618e-03; Q0_7 = 4.9954552590464e-04; Q0_8 = 0.0000000000000e+00; Q0_9 = 0.0000000000000e+00; Q0_10 = 0.0000000000000e+00; Q0_11 = 0.0000000000000e+00; Q1_0 = -6.7284756079369e-01; Q1_1 = 0.0000000000000e+00; Q1_2 = 9.4074021172233e-01; Q1_3 = -4.0511642426516e-01; Q1_4 = 1.9369192209331e-01; Q1_5 = -6.8638079843479e-02; Q1_6 = 1.3146457241484e-02; Q1_7 = -9.7652615479254e-04; Q1_8 = 0.0000000000000e+00; Q1_9 = 0.0000000000000e+00; Q1_10 = 0.0000000000000e+00; Q1_11 = 0.0000000000000e+00; Q2_0 = 2.5969732837062e-01; Q2_1 = -9.4074021172233e-01; Q2_2 = 0.0000000000000e+00; Q2_3 = 9.4316393361096e-01; Q2_4 = -3.5728039257451e-01; Q2_5 = 1.1266686855013e-01; Q2_6 = -1.8334941452280e-02; Q2_7 = 8.2741521740941e-04; Q2_8 = 0.0000000000000e+00; Q2_9 = 0.0000000000000e+00; Q2_10 = 0.0000000000000e+00; Q2_11 = 0.0000000000000e+00; Q3_0 = -1.3519390385721e-01; Q3_1 = 4.0511642426516e-01; Q3_2 = -9.4316393361096e-01; Q3_3 = 0.0000000000000e+00; Q3_4 = 8.7694387866575e-01; Q3_5 = -2.4698058719506e-01; Q3_6 = 4.7291642094198e-02; Q3_7 = -4.0135203618880e-03; Q3_8 = 0.0000000000000e+00; Q3_9 = 0.0000000000000e+00; Q3_10 = 0.0000000000000e+00; Q3_11 = 0.0000000000000e+00; Q4_0 = 6.9678474730984e-02; Q4_1 = -1.9369192209331e-01; Q4_2 = 3.5728039257451e-01; Q4_3 = -8.7694387866575e-01; Q4_4 = 0.0000000000000e+00; Q4_5 = 8.1123946853807e-01; Q4_6 = -2.0267150541446e-01; Q4_7 = 3.8680398901392e-02; Q4_8 = -3.5714285714286e-03; Q4_9 = 0.0000000000000e+00; Q4_10 = 0.0000000000000e+00; Q4_11 = 0.0000000000000e+00; Q5_0 = -2.6434024071371e-02; Q5_1 = 6.8638079843479e-02; Q5_2 = -1.1266686855013e-01; Q5_3 = 2.4698058719506e-01; Q5_4 = -8.1123946853807e-01; Q5_5 = 0.0000000000000e+00; Q5_6 = 8.0108544742793e-01; Q5_7 = -2.0088756283071e-01; Q5_8 = 3.8095238095238e-02; Q5_9 = -3.5714285714286e-03; Q5_10 = 0.0000000000000e+00; Q5_11 = 0.0000000000000e+00; Q6_0 = 5.5992311465618e-03; Q6_1 = -1.3146457241484e-02; Q6_2 = 1.8334941452280e-02; Q6_3 = -4.7291642094198e-02; Q6_4 = 2.0267150541446e-01; Q6_5 = -8.0108544742793e-01; Q6_6 = 0.0000000000000e+00; Q6_7 = 8.0039405922650e-01; Q6_8 = -2.0000000000000e-01; Q6_9 = 3.8095238095238e-02; Q6_10 = -3.5714285714286e-03; Q6_11 = 0.0000000000000e+00; Q7_0 = -4.9954552590464e-04; Q7_1 = 9.7652615479254e-04; Q7_2 = -8.2741521740941e-04; Q7_3 = 4.0135203618880e-03; Q7_4 = -3.8680398901392e-02; Q7_5 = 2.0088756283071e-01; Q7_6 = -8.0039405922650e-01; Q7_7 = 0.0000000000000e+00; Q7_8 = 8.0000000000000e-01; Q7_9 = -2.0000000000000e-01; Q7_10 = 3.8095238095238e-02; Q7_11 = -3.5714285714286e-03; for i = 1:BP for j = 1:BP Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); end end %%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Difference operator %% D1 = H\Q; %%%%%%%%%%%%%%%%%%%%%%%%%%%