Mercurial > repos > public > sbplib
view +parametrization/old/triang_interp.m @ 774:66eb4a2bbb72 feature/grids
Remove default scaling of the system.
The scaling doens't seem to help actual solutions. One example that fails in the flexural code.
With large timesteps the solutions seems to blow up. One particular example is profilePresentation
on the tdb_presentation_figures branch with k = 0.0005
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 18 Jul 2018 15:42:52 -0700 |
parents | 81e0ead29431 |
children |
line wrap: on
line source
classdef triang_interp properties g1, g2 ,g3 % Curves encirling the tirangle in the positive direction. A,B,C % The corners of the triangle Sa, Sb, Sc % Mappings from square with different sides collapsed end methods function o = triang_interp(g1,g2,g3) o.g1 = g1; o.g2 = g2; o.g3 = g3; o.A = g1(0); o.B = g2(0); o.C = g3(0); o.Sa = parametrization.triang_interp.square_to_triangle_interp(g2,g3,g1); o.Sb = parametrization.triang_interp.square_to_triangle_interp(g3,g1,g2); o.Sc = parametrization.triang_interp.square_to_triangle_interp(g1,g2,g3); end function show(o,N) % Show the mapped meridians of the triangle. % Might be used for the barycentric coordinates. ma = @(t)o.Sa(1/2,1-t); mb = @(t)o.Sb(1/2,1-t); mc = @(t)o.Sc(1/2,1-t); na = @(t)o.Sa(t,1/2); ka = @(t)(o.g1(1-t)+o.g2(t))/2; h = parametrization.plot_curve(ma); h.Color = Color.blue; h = parametrization.plot_curve(mb); h.Color = Color.blue; h = parametrization.plot_curve(mc); h.Color = Color.blue; h = parametrization.plot_curve(na); h.Color = Color.red; h = parametrization.plot_curve(ka); h.Color = Color.red; [a(1),a(2)] = ma(1/3); [b(1),b(2)] = mb(1/3); [c(1),c(2)] = mc(1/3); d = ka(1-1/3); parametrization.label_pt(a,b,c,d); % t = linspace(0,1,N); % for i = 1:N % sa = @(s)o.Sa(s,t(i)); % sb = @(s)o.Sb(s,t(i)); % sc = @(s)o.Sc(s,t(i)); % h = parametrization.plot_curve(sa); % h.Color = Color.blue; % h = parametrization.plot_curve(sb); % h.Color = Color.blue; % h = parametrization.plot_curve(sc); % h.Color = Color.blue; % end h = parametrization.plot_curve(o.g1); h.LineWidth = 2; h.Color = Color.red; h = parametrization.plot_curve(o.g2); h.LineWidth = 2; h.Color = Color.red; h = parametrization.plot_curve(o.g3); h.LineWidth = 2; h.Color = Color.red; end end methods(Static) % Makes a mapping from the unit square to a triangle by collapsing % one of the sides of the squares to a corner on the triangle % The collapsed side is mapped to the corner oposite to g1. % This is done such that for S(s,t), S(s,1) = g1(s) function S = square_to_triangle_interp(g1,g2,g3) corner = parametrization.line_segment(g3(0),g3(0)); S = parametrization.transfinite_interp(corner,g3,f(g1),f(g2)) % Function to flip a curve function h = f(g) h = @(t)g(1-t); end end end end % % Return a mapping from u.v to x,y of the domain encircled by g1 g2 g3 in the the positive direction. created be using transfinite interpolation. % function S = triang_interp(g1,g2,g3) % A = g1(0) % B = g2(0) % C = g3(0) % function [x,y] = S_fun(u,v) % w = sqrt((u-1)^2+v^2)/sqrt(2); % Parameter for g3 % v = v*(1-u-v)*g1(u) + u*(1-u-v)*g2(v) + u*v*g3(w) ... % +(1-u)*(1-v)*A+u*(1-v)*B + (1-u)*v*C; % x = v(1); % y = v(2); % end % S = @S_fun; % end % function subsref(obj,S) % if ~all(isnumeric(S.subs{:})) % error('Only supports calling object with number') % end % if numel(S.subs{:}) > 1 % disp('You''ve called the object with more than one argument'); % else % disp(['You called the object with argument = ',num2str(S.subs{:})]); % end % end