Mercurial > repos > public > sbplib
view +parametrization/Ti3D.m @ 774:66eb4a2bbb72 feature/grids
Remove default scaling of the system.
The scaling doens't seem to help actual solutions. One example that fails in the flexural code.
With large timesteps the solutions seems to blow up. One particular example is profilePresentation
on the tdb_presentation_figures branch with k = 0.0005
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 18 Jul 2018 15:42:52 -0700 |
parents | eef74cd9b49c |
children |
line wrap: on
line source
classdef Ti3D properties gs % {6}Surfaces V % FunctionHandle(XI,ETA,ZETA) end methods % TODO write all fancy features for flipping around with the surfaces % Each surface is defined with an outward facing outward and choosing % the "corner" where XI=0 if not possible the corner where ETA=0 is choosen function obj = Ti3D(CW,CE,CS,CN,CB,CT) obj.gs = {CE,CW,CS,CN,CB,CT}; gw = CW.g; ge = CE.g; gs = CS.g; gn = CN.g; gb = CB.g; gt = CT.g; function o = V_fun(XI,ETA,ZETA) XI=XI'; ETA=ETA'; ZETA=ZETA'; one=0*ETA+1; zero=0*ETA; Sw = gw(ETA,(1-ZETA)); Se = ge((1-ETA),(1-ZETA)); Ss = gs(XI,ZETA); Sn = gn((1-XI),(1-ZETA)); Sb = gb((1-XI),ETA); St = gt(XI,ETA); Ewt = gw(ETA,zero); Ewb = gw(ETA,one); Ews = gw(zero,1-ZETA); Ewn = gw(one,1-ZETA); Eet = ge(1-ETA,zero); Eeb = ge(1-ETA,one); Ees = ge(one,1-ZETA); Een = ge(zero,1-ZETA); Enb = gn(1-XI,one); Ent = gn(1-XI,zero); Est = gs(XI,one); Esb = gs(XI,zero); Cwbs = gw(zero,one); Cwbn = gw(one,one); Cwts = gw(zero,zero); Cwtn = gw(one,zero); Cebs = ge(one,one); Cebn = ge(zero,one); Cets = ge(one,zero); Cetn = ge(zero,zero); X1 = (1-XI).*Sw(1,:,:) + XI.*Se(1,:,:); X2 = (1-ETA).*Ss(1,:,:) + ETA.*Sn(1,:,:); X3 = (1-ZETA).*Sb(1,:,:) + ZETA.*St(1,:,:); X12 = (1-XI).*(1-ETA).*Ews(1,:,:) + (1-XI).*ETA.*Ewn(1,:,:) + XI.*(1-ETA).*Ees(1,:,:) + XI.*ETA.*Een(1,:,:); X13 = (1-XI).*(1-ZETA).*Ewb(1,:,:) + (1-XI).*ZETA.*Ewt(1,:,:) + XI.*(1-ZETA).*Eeb(1,:,:) + XI.*ZETA.*Eet(1,:,:); X23 = (1-ETA).*(1-ZETA).*Esb(1,:,:) + (1-ETA).*ZETA.*Est(1,:,:) + ETA.*(1-ZETA).*Enb(1,:,:) + ETA.*ZETA.*Ent(1,:,:); X123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(1,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(1,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(1,:,:) + ... (1-XI).*ETA.*ZETA.*Cwtn(1,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(1,:,:) + XI.*(1-ETA).*ZETA.*Cets(1,:,:) + ... XI.*ETA.*(1-ZETA).*Cebn(1,:,:) + XI.*ETA.*ZETA.*Cetn(1,:,:); X = X1 + X2 + X3 - X12 - X13 - X23 + X123; Y1 = (1-XI).*Sw(2,:,:) + XI.*Se(2,:,:); Y2 = (1-ETA).*Ss(2,:,:) + ETA.*Sn(2,:,:); Y3 = (1-ZETA).*Sb(2,:,:) + ZETA.*St(2,:,:); Y12 = (1-XI).*(1-ETA).*Ews(2,:,:) + (1-XI).*ETA.*Ewn(2,:,:) + XI.*(1-ETA).*Ees(2,:,:) + XI.*ETA.*Een(2,:,:); Y13 = (1-XI).*(1-ZETA).*Ewb(2,:,:) + (1-XI).*ZETA.*Ewt(2,:,:) + XI.*(1-ZETA).*Eeb(2,:,:) + XI.*ZETA.*Eet(2,:,:); Y23 = (1-ETA).*(1-ZETA).*Esb(2,:,:) + (1-ETA).*ZETA.*Est(2,:,:) + ETA.*(1-ZETA).*Enb(2,:,:) + ETA.*ZETA.*Ent(2,:,:); Y123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(2,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(2,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(2,:,:) + ... (1-XI).*ETA.*ZETA.*Cwtn(2,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(2,:,:) + XI.*(1-ETA).*ZETA.*Cets(2,:,:) + ... XI.*ETA.*(1-ZETA).*Cebn(2,:,:) + XI.*ETA.*ZETA.*Cetn(2,:,:); Y = Y1 + Y2 + Y3 - Y12 - Y13 - Y23 + Y123; Z1 = (1-XI).*Sw(3,:,:) + XI.*Se(3,:,:); Z2 = (1-ETA).*Ss(3,:,:) + ETA.*Sn(3,:,:); Z3 = (1-ZETA).*Sb(3,:,:) + ZETA.*St(3,:,:); Z12 = (1-XI).*(1-ETA).*Ews(3,:,:) + (1-XI).*ETA.*Ewn(3,:,:) + XI.*(1-ETA).*Ees(3,:,:) + XI.*ETA.*Een(3,:,:); Z13 = (1-XI).*(1-ZETA).*Ewb(3,:,:) + (1-XI).*ZETA.*Ewt(3,:,:) + XI.*(1-ZETA).*Eeb(3,:,:) + XI.*ZETA.*Eet(3,:,:); Z23 = (1-ETA).*(1-ZETA).*Esb(3,:,:) + (1-ETA).*ZETA.*Est(3,:,:) + ETA.*(1-ZETA).*Enb(3,:,:) + ETA.*ZETA.*Ent(3,:,:); Z123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(3,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(3,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(3,:,:) + ... (1-XI).*ETA.*ZETA.*Cwtn(3,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(3,:,:) + XI.*(1-ETA).*ZETA.*Cets(3,:,:) + ... XI.*ETA.*(1-ZETA).*Cebn(3,:,:) + XI.*ETA.*ZETA.*Cetn(3,:,:); Z = Z1 + Z2 + Z3 - Z12 - Z13 - Z23 + Z123; o = [X;Y;Z]; end obj.V = @V_fun; end %Should be rewritten so that the input is xi eta zeta function [X,Y,Z] = map(obj,XI,ETA,ZETA) V = obj.V; p = V(XI,ETA,ZETA); X = p(1,:)'; Y = p(2,:)'; Z = p(3,:)'; end % function h = plot(obj,nu,nv) % S = obj.S; % % default_arg('nv',nu) % % u = linspace(0,1,nu); % v = linspace(0,1,nv); % % m = 100; % % X = zeros(nu+nv,m); % Y = zeros(nu+nv,m); % % % t = linspace(0,1,m); % for i = 1:nu % p = S(u(i),t); % X(i,:) = p(1,:); % Y(i,:) = p(2,:); % end % % for i = 1:nv % p = S(t,v(i)); % X(i+nu,:) = p(1,:); % Y(i+nu,:) = p(2,:); % end % % h = line(X',Y'); % end % % % function h = show(obj,nu,nv) % default_arg('nv',nu) % S = obj.S; % % if(nu>2 || nv>2) % h_grid = obj.plot(nu,nv); % set(h_grid,'Color',[0 0.4470 0.7410]); % end % % h_bord = obj.plot(2,2); % set(h_bord,'Color',[0.8500 0.3250 0.0980]); % set(h_bord,'LineWidth',2); % end % % % % TRANSFORMATIONS % function ti = translate(obj,a) % gs = obj.gs; % % for i = 1:length(gs) % new_gs{i} = gs{i}.translate(a); % end % % ti = grid.Ti(new_gs{:}); % end % % % Mirrors the Ti so that the resulting Ti is still left handed. % % (Corrected by reversing curves and switching e and w) % function ti = mirror(obj, a, b) % gs = obj.gs; % % new_gs = cell(1,4); % % new_gs{1} = gs{1}.mirror(a,b).reverse(); % new_gs{3} = gs{3}.mirror(a,b).reverse(); % new_gs{2} = gs{4}.mirror(a,b).reverse(); % new_gs{4} = gs{2}.mirror(a,b).reverse(); % % ti = grid.Ti(new_gs{:}); % end % % function ti = rotate(obj,a,rad) % gs = obj.gs; % % for i = 1:length(gs) % new_gs{i} = gs{i}.rotate(a,rad); % end % % ti = grid.Ti(new_gs{:}); % end % % function ti = rotate_edges(obj,n); % new_gs = cell(1,4); % for i = 0:3 % new_i = mod(i - n,4); % new_gs{new_i+1} = obj.gs{i+1}; % end % ti = grid.Ti(new_gs{:}); % end % end % % methods(Static) % function obj = points(p1, p2, p3, p4) % g1 = grid.Curve.line(p1,p2); % g2 = grid.Curve.line(p2,p3); % g3 = grid.Curve.line(p3,p4); % g4 = grid.Curve.line(p4,p1); % % obj = grid.Ti(g1,g2,g3,g4); % end % % function label(varargin) % if nargin == 2 && ischar(varargin{2}) % label_impl(varargin{:}); % else % for i = 1:length(varargin) % label_impl(varargin{i},inputname(i)); % end % end % % % function label_impl(ti,str) % S = ti.S; % % pc = S(0.5,0.5); % % margin = 0.1; % pw = S( margin, 0.5); % pe = S(1-margin, 0.5); % ps = S( 0.5, margin); % pn = S( 0.5, 1-margin); % % % ti.show(2,2); % grid.place_label(pc,str); % grid.place_label(pw,'w'); % grid.place_label(pe,'e'); % grid.place_label(ps,'s'); % grid.place_label(pn,'n'); % end % end end end