view +noname/calculateErrors.m @ 774:66eb4a2bbb72 feature/grids

Remove default scaling of the system. The scaling doens't seem to help actual solutions. One example that fails in the flexural code. With large timesteps the solutions seems to blow up. One particular example is profilePresentation on the tdb_presentation_figures branch with k = 0.0005
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 18 Jul 2018 15:42:52 -0700
parents 1201eb16557e
children
line wrap: on
line source

% [discr, trueSolution] =  schemeFactory(m)
%     where trueSolution should be a timeSnapshot of the true solution a time T
% T is the end time
% m are grid size parameters.
% N are number of timesteps to use for each gird size
% timeOpt are options for the timeStepper
% errorFun is a function_handle taking 2 or 3 arguments, errorFun(trueSolution, approxSolution), errorFun(trueSolution, approxSolution, discr)
function e = calculateErrors(schemeFactory, T, m, N, errorFun, timeOpt)
    %TODO: Ability to choose paralell or not
    assertType(schemeFactory, 'function_handle');
    assertNumberOfArguments(schemeFactory, 1);
    assertScalar(T);
    assert(length(m) == length(N), 'Vectors m and N must have the same length');
    assertType(errorFun, 'function_handle');

    if ~ismember(nargin(errorFun), [2,3])
        error('sbplib:noname:calculateErrors:wrongNumberOfArguments', '"%s" must have 2 or 3, found %d', toString(errorFun), nargin(errorFun));
    end

    default_arg('timeOpt', struct());


    e = zeros(1,length(m));
    parfor i = 1:length(m)
        done = timeTask('m = %3d ', m(i));

        [discr, trueSolution] = schemeFactory(m(i));

        timeOptTemp = timeOpt;
        timeOptTemp.k = T/N(i);
        ts = discr.getTimestepper(timeOptTemp);
        ts.stepTo(N(i), true);
        approxSolution = discr.getTimeSnapshot(ts);

        switch nargin(errorFun)
            case 2
                e(i) = errorFun(trueSolution, approxSolution);
            case 3
                e(i) = errorFun(trueSolution, approxSolution, discr);
        end

        fprintf('e = %.4e', e(i))
        done()
    end
    fprintf('\n')
end


%% Example error function
% u_true = grid.evalOn(dr.grid, @(x,y)trueSolution(T,x,y));
% err = u_true-u_false;
% e(i) = norm(err)/norm(u_true);
% % e(i) = sqrt(err'*d.H*d.J*err/(u_true'*d.H*d.J*u_true));