view +grid/CartesianTest.m @ 774:66eb4a2bbb72 feature/grids

Remove default scaling of the system. The scaling doens't seem to help actual solutions. One example that fails in the flexural code. With large timesteps the solutions seems to blow up. One particular example is profilePresentation on the tdb_presentation_figures branch with k = 0.0005
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 18 Jul 2018 15:42:52 -0700
parents 7c1d3fc33f90
children
line wrap: on
line source

function tests = CartesianTest()
    tests = functiontests(localfunctions);
end


function testWarningEmptyGrid(testCase)
    in  = {
        {[]},
        {[],[1]},
        {[1],[2], []},
    };

    for i = 1:length(in)
        testCase.verifyError(@()grid.Cartesian(in{i}{:}),'grid:Cartesian:EmptyGrid');
    end
end

function testN(testCase)
    in  = {
        {[1 2 3]},
        {[1 2 3],[1 2]},
        {[1 2 3],[1 2 3]},
        {[1 2 3],[1 2 3], [1]},
        {[1 2 3],[1 2 3], [1 3 4]},
    };

    out = [3,6,9,9,27];

    for i = 1:length(in)
        g = grid.Cartesian(in{i}{:});
        testCase.verifyEqual(g.N(),out(i));
    end
end


function testD(testCase)
    in  = {
        {[1 2 3]},
        {[1 2 3],[1 2]},
        {[1 2 3],[1 2 3]},
        {[1 2 3],[1 2 3], [1]},
        {[1 2 3],[1 2 3], [1 3 4]},
    };

    out = [1,2,2,3,3];

    for i = 1:length(in)
        g = grid.Cartesian(in{i}{:});
        testCase.verifyEqual(g.D(),out(i));
    end
end

function testSize(testCase)
    in  = {
        {[1 2 3]},
        {[1 2 3],[1 2]},
        {[1 2 3],[1 2 3]},
        {[1 2 3],[1 2 3], [1]},
        {[1 2 3],[1 2 3], [1 3 4]},
    };

    out = {
        [3],
        [3 2],
        [3 3],
        [3 3 1],
        [3 3 3],
    };

    for i = 1:length(in)
        g = grid.Cartesian(in{i}{:});
        testCase.verifyEqual(g.size(),out{i});
    end
end

function testPoints(testCase)
    in  = {
        {[1 2]},
        {[1 2],[3 4]},
        {[1 2],[3 4], [5 6]},
    };

    out = {
        [[1; 2]],
        [[1; 1; 2; 2],[3; 4; 3; 4]],
        [[1; 1; 1; 1; 2; 2; 2; 2],[3; 3; 4; 4; 3; 3; 4; 4],[ 5; 6; 5; 6; 5; 6; 5; 6]],
    };

    for i = 1:length(in)
        g = grid.Cartesian(in{i}{:});
        testCase.verifyEqual(g.points(),out{i});
    end
end

function testMatrices(testCase)
    in  = {
        {[1 2]},
        {[1 2],[3 4]},
        {[1 2],[3 4], [5 6]},
    };

    out{1}{1} = [1; 2];

    out{2}{1} = [1, 1; 2, 2];
    out{2}{2} = [3, 4; 3, 4];

    out{3}{1}(:,:,1) = [1, 1; 2, 2];
    out{3}{1}(:,:,2) = [1, 1; 2, 2];

    out{3}{2}(:,:,1) = [3, 4; 3, 4];
    out{3}{2}(:,:,2) = [3, 4; 3, 4];

    out{3}{3}(:,:,1) = [5, 5; 5, 5];
    out{3}{3}(:,:,2) = [6, 6; 6, 6];

    for i = 1:length(in)
        g = grid.Cartesian(in{i}{:});
        testCase.verifyEqual(g.matrices(),out{i});
    end
end


function testRestrictFuncInvalidInput(testCase)
    inG1  = {
        {[1 2 3 4 5]},
        {[1 2 3],[4 5 6 7 8]},
        {[1 2 3],[4 5 6 7 8]},
        {[1 2 3],[4 5 6 7 8]},
    };

    inG2  = {
        {[1 3 4 5]},
        {[1 3],[4 5 6 8]},
        {[1 3],[4 6 8]},
        {[1 3],[4 6 8]},
    };

    inGf = {
        [1; 2; 3; 4; 5],
        [14; 15; 16; 17; 18; 24; 25; 26; 27; 28; 34; 35; 36; 37; 38];
        [14; 15; 16; 17; 18; 24; 25; 26; 27; 28; 34; 35; 36];
        [14; 15; 16; 17; 18; 24; 25; 26; 27; 28; 34; 35; 36; 37; 38; 39; 40];
    };

    out = {
        'grid:Cartesian:restrictFunc:NonMatchingGrids',
        'grid:Cartesian:restrictFunc:NonMatchingGrids',
        'grid:Cartesian:restrictFunc:NonMatchingFunctionSize',
        'grid:Cartesian:restrictFunc:NonMatchingFunctionSize',
    };

    for i = 1:length(inG1)
        g1 = grid.Cartesian(inG1{i}{:});
        g2 = grid.Cartesian(inG2{i}{:});
        testCase.verifyError(@()g1.restrictFunc(inGf{i},g2),out{i});
    end
end

function testRestrictFunc(testCase)
    inG1  = {
        {[1 2 3 4 5]},
        {[1 2 3],[4 5 6 7 8]},
    };

    inG2  = {
        {[1 3 5]},
        {[1 3],[4 6 8]},
    };

    inGf = {
        [1; 2; 3; 4; 5],
        [14; 15; 16; 17; 18; 24; 25; 26; 27; 28; 34; 35; 36; 37; 38];
    };

    outGf = {
        [1; 3; 5],
        [14; 16; 18; 34; 36; 38];
    };

    for i = 1:length(inG1)
        g1 = grid.Cartesian(inG1{i}{:});
        g2 = grid.Cartesian(inG2{i}{:});
        testCase.verifyEqual(g1.restrictFunc(inGf{i}, g2), outGf{i});
    end
end

function testScaling(testCase)
    in = {[1 2 3], [1 2]};
    g = grid.Cartesian(in{:});

    testCase.verifyError(@()g.scaling(),'grid:Cartesian:NoScalingSet');

    g.h = [2 1];
    testCase.verifyEqual(g.scaling(),[2 1]);

end


function testGetBoundaryNames(testCase)
    in = {
        {[1 2 3]},
        {[1 2 3], [4 5]},
        {[1 2 3], [4 5], [6 7 8]},
    };

    out = {
        {'l', 'r'},
        {'w', 'e', 's', 'n'},
        {'w', 'e', 's', 'n', 'd', 'u'},
    };

    for i = 1:length(in)
        g = grid.Cartesian(in{i}{:});
        testCase.verifyEqual(g.getBoundaryNames(), out{i});
    end
end

function testGetBoundary(testCase)
    grids = {
        {[1 2 3]},
        {[1 2 3], [4 5]},
        {[1 2 3], [4 5], [6 7 8]},
    };

    boundaries = {
        {'l', 'r'},
        {'w', 'e', 's', 'n'},
        {'w', 'e', 's', 'n', 'd', 'u'},
    };


    % 1d
    out{1,1} = 1;
    out{1,2} = 3;

    % 2d
    out{2,1} = [
        1,4;
        1,5;
    ];
    out{2,2} = [
        3,4;
        3,5;
    ];
    out{2,3} = [
        1,4;
        2,4;
        3,4;
    ];
    out{2,4} = [
        1,5;
        2,5;
        3,5;
    ];

    % 3d
    out{3,1} = [
        1,4,6;
        1,4,7;
        1,4,8;
        1,5,6;
        1,5,7;
        1,5,8;
    ];
    out{3,2} = [
        3,4,6;
        3,4,7;
        3,4,8;
        3,5,6;
        3,5,7;
        3,5,8;
    ];
    out{3,3} = [
        1,4,6;
        1,4,7;
        1,4,8;
        2,4,6;
        2,4,7;
        2,4,8;
        3,4,6;
        3,4,7;
        3,4,8;
    ];
    out{3,4} = [
        1,5,6;
        1,5,7;
        1,5,8;
        2,5,6;
        2,5,7;
        2,5,8;
        3,5,6;
        3,5,7;
        3,5,8;
    ];
    out{3,5} = [
        1,4,6;
        1,5,6;
        2,4,6;
        2,5,6;
        3,4,6;
        3,5,6;
    ];
    out{3,6} = [
        1,4,8;
        1,5,8;
        2,4,8;
        2,5,8;
        3,4,8;
        3,5,8;
    ];

    for ig = 1:length(grids)
        g = grid.Cartesian(grids{ig}{:});
        for ib = 1:length(boundaries{ig})
            testCase.verifyEqual(g.getBoundary(boundaries{ig}{ib}), out{ig,ib});
        end
    end
end