Mercurial > repos > public > sbplib
view diracDiscr.m @ 1341:663eb90a4559 feature/D2_boundary_opt
Pass logic grid along to diracDiscr
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 22 Jul 2022 16:37:49 +0200 |
parents | 60c875c18de3 |
children |
line wrap: on
line source
% n-dimensional delta function % g: cartesian grid % x_s: source point coordinate vector, e.g. [x; y] or [x; y; z]. % m_order: Number of moment conditions % s_order: Number of smoothness conditions % H: cell array of 1D norm matrices function d = diracDiscr(g, x_s, m_order, s_order, H) assertType(g, 'grid.Cartesian'); dim = g.d; d_1D = cell(dim,1); % Allow for non-cell input in 1D if dim == 1 H = {H}; end % Create 1D dirac discr for each coordinate dir. for i = 1:dim d_1D{i} = diracDiscr1D(x_s(i), g.x{i}, m_order, s_order, H{i}); end d = d_1D{dim}; for i = dim-1: -1: 1 % Perform outer product, transpose, and then turn into column vector d = (d_1D{i}*d')'; d = d(:); end end % Helper function for 1D delta functions function ret = diracDiscr1D(x_s, x, m_order, s_order, H) % Return zeros if x0 is outside grid if x_s < x(1) || x_s > x(end) ret = zeros(size(x)); return end tot_order = m_order+s_order; %This is equiv. to the number of equations solved for S = []; M = []; % Get interior grid spacing middle = floor(length(x)/2); h = x(middle+1) - x(middle); % Use middle point to allow for staggered grids. index = sourceIndices(x_s, x, tot_order, h); polynomial = (x(index)-x(index(1)))/(x(index(end))-x(index(1))); x_0 = (x_s-x(index(1)))/(x(index(end))-x(index(1))); quadrature = diag(H); quadrature_weights = quadrature(index)/h; h_polynomial = polynomial(2)-polynomial(1); b = zeros(tot_order,1); for i = 1:m_order b(i,1) = x_0^(i-1); end for i = 1:tot_order for j = 1:m_order M(j,i) = polynomial(i)^(j-1)*h_polynomial*quadrature_weights(i); end end for i = 1:tot_order for j = 1:s_order S(j,i) = (-1)^(i-1)*polynomial(i)^(j-1); end end A = [M;S]; d = A\b; ret = x*0; ret(index) = d/h*h_polynomial; end function I = sourceIndices(x_s, x, tot_order, h) % Find the indices that are within range of of the point source location I = find(tot_order*h/2 >= abs(x-x_s)); if length(I) > tot_order if length(I) == tot_order + 2 I = I(2:end-1); elseif length(I) == tot_order + 1 I = I(1:end-1); end elseif length(I) < tot_order if x_s < x(1) + ceil(tot_order/2)*h I = 1:tot_order; elseif x_s > x(end) - ceil(tot_order/2)*h I = length(x)-tot_order+1:length(x); else if I(end) < length(x) I = [I; I(end)+1]; else I = [I(1)-1; I]; end end end end