Mercurial > repos > public > sbplib
view +multiblock/DiffOp.m @ 220:5df8d20281fe feature/beams
Made scheme boundary_condition return a cell array of penalties if there are several of them.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 28 Jun 2016 13:11:14 +0200 |
parents | 8b10476b9bb7 |
children | b8ee5212f651 |
line wrap: on
line source
classdef DiffOp < scheme.Scheme properties grid order diffOps D H blockmatrixDiv end methods function obj = DiffOp(doHand, grid, order, doParam) % doHand -- may either be a function handle or a cell array of % function handles for each grid. The function handle(s) % should be on the form do = doHand(grid, order, ...) % Additional parameters for each doHand may be provided in % the doParam input. % grid -- a multiblock grid % order -- integer specifying the order of accuracy % doParam -- may either be a cell array or a cell array of cell arrays % for each block. If it is a cell array with length equal % to the number of blocks then each element is sent to the % corresponding function handle as extra parameters: % doHand(..., doParam{i}{:}) Otherwise doParam is sent as % extra parameters to all doHand: doHand(..., doParam{:}) default_arg('doParam', []) [getHand, getParam] = parseInput(doHand, grid, doParam); nBlocks = grid.nBlocks(); obj.order = order; % Create the diffOps for each block obj.diffOps = cell(1, nBlocks); for i = 1:nBlocks h = getHand(i); p = getParam(i); obj.diffOps{i} = h(grid.grids{i}, order, p{:}); end % Build the norm matrix H = cell(nBlocks, nBlocks); for i = 1:nBlocks H{i,i} = obj.diffOps{i}.H; end obj.H = blockmatrix.toMatrix(H); % Build the differentiation matrix D = cell(nBlocks, nBlocks); for i = 1:nBlocks D{i,i} = obj.diffOps{i}.D; end for i = 1:nBlocks for j = i:nBlocks intf = grid.connections{i,j}; if isempty(intf) continue end [ii, ij] = obj.diffOps{i}.interface(intf{1}, obj.diffOps{j}, intf{2}); D{i,i} = D{i,i} + ii; D{i,j} = ij; [jj, ji] = obj.diffOps{j}.interface(intf{2}, obj.diffOps{i}, intf{1}); D{j,j} = D{j,j} + jj; D{j,i} = ji; end end obj.D = blockmatrix.toMatrix(D); obj.blockmatrixDiv = blockmatrix.getDivision(D); function [getHand, getParam] = parseInput(doHand, grid, doParam) if ~isa(grid, 'multiblock.Grid') error('multiblock:DiffOp:DiffOp:InvalidGrid', 'Requires a multiblock grid.'); end if iscell(doHand) && length(doHand) == grid.nBlocks() getHand = @(i)doHand{i}; elseif isa(doHand, 'function_handle') getHand = @(i)doHand; else error('multiblock:DiffOp:DiffOp:InvalidGridDoHand', 'doHand must be a function handle or a cell array of length grid.nBlocks'); end if isempty(doParam) getParam = @(i){}; elseif iscell(doParam) && length(doParam) == grid.nBlocks() getParam = @(i)doParam{i}; else getParam = @(i)doParam; end end end function ops = splitOp(obj, op) % Splits a matrix operator into a cell-matrix of matrix operators for % each grid. ops = sparse2cell(op, obj.NNN); end % Creates the closere and penalty matrix for a given boundary condition, % boundary -- the name of the boundary on the form [id][name] where % id is the number of a block and name is the name of a % boundary of that block example: 1s or 3w function [closure, penalty] = boundary_condition(obj,boundary,type) I = boundary{1}; name = boundary{2}; % Get the closure and penaly matrices [blockClosure, blockPenalty] = obj.diffOps{I}.boundary_condition(name, type); % Expand to matrix for full domain. div = obj.blockmatrixDiv; closure = blockmatrix.zero(div); closure{I,I} = blockClosure; closure = blockmatrix.toMatrix(closure); div{2} = 1; % Penalty is a column vector if ~iscell(blockPenalty) p = blockmatrix.zero(div); p{I} = blockPenalty; penalty = blockmatrix.toMatrix(p); else for i = 1:length(blockPenalty) p = blockmatrix.zero(div); p{I} = blockPenalty{i}; penalty{i} = blockmatrix.toMatrix(p); end end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) end % Size returns the number of degrees of freedom function N = size(obj) N = 0; for i = 1:length(obj.diffOps) N = N + obj.diffOps{i}.size(); end end end end