Mercurial > repos > public > sbplib
view +scheme/Schrodinger.m @ 1028:5df155ededcd feature/advectionRV
Remove obsolete AdvectionRV1D scheme
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 07 Jan 2019 16:41:21 +0100 |
parents | 706d1c2b4199 |
children | 337c4d1dcef5 c12b84fe9b00 |
line wrap: on
line source
classdef Schrodinger < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing x % Grid order % Order accuracy for the approximation D % non-stabalized scheme operator H % Discrete norm M % Derivative norm alpha D2 Hi e_l e_r d1_l d1_r gamm end methods % Solving SE in the form u_t = i*u_xx -i*V; function obj = Schrodinger(m,xlim,order,V) default_arg('V',0); [x, h] = util.get_grid(xlim{:},m); ops = sbp.Ordinary(m,h,order); obj.D2 = sparse(ops.derivatives.D2); obj.H = sparse(ops.norms.H); obj.Hi = sparse(ops.norms.HI); obj.M = sparse(ops.norms.M); obj.e_l = sparse(ops.boundary.e_1); obj.e_r = sparse(ops.boundary.e_m); obj.d1_l = sparse(ops.boundary.S_1); obj.d1_r = sparse(ops.boundary.S_m); if isa(V,'function_handle') V_vec = V(x); else V_vec = x*0 + V; end V_mat = spdiags(V_vec,0,m,m); obj.D = 1i * obj.D2 - 1i * V_mat; obj.m = m; obj.h = h; obj.order = order; obj.x = x; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type,data) default_arg('type','dirichlet'); default_arg('data',0); [e,d,s] = obj.get_boundary_ops(boundary); switch type % Dirichlet boundary condition case {'D','d','dirichlet'} tau = s * 1i*d; closure = obj.Hi*tau*e'; switch class(data) case 'double' penalty = -obj.Hi*tau*data; case 'function_handle' penalty = @(t)-obj.Hi*tau*data(t); otherwise error('Wierd data argument!') end % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u,d_u,s_u] = obj.get_boundary_ops(boundary); [e_v,d_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); a = -s_u* 1/2 * 1i ; b = a'; tau = b*d_u; sig = -a*e_u; closure = obj.Hi * (tau*e_u' + sig*d_u'); penalty = obj.Hi * (-tau*e_v' - sig*d_v'); end % Ruturns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary function [e,d,s] = get_boundary_ops(obj,boundary) switch boundary case 'l' e = obj.e_l; d = obj.d1_l; s = -1; case 'r' e = obj.e_r; d = obj.d1_r; s = 1; otherwise error('No such boundary: boundary = %s',boundary); end end function N = size(obj) N = obj.m; end end methods(Static) % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u % and bound_v of scheme schm_v. % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); end end end