Mercurial > repos > public > sbplib
view +sbp/D1_nonequidistant_minimal.m @ 253:5b6dfa8a743d operator_remake
Bug fixes in nonequidistant class files.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Wed, 07 Sep 2016 14:29:38 +0200 |
parents | 07fa0d6a05bb |
children |
line wrap: on
line source
classdef D1_nonequidistant_minimal < sbp.OpSet properties norms % Struct containing norm matrices such as H,Q, M boundary % Struct contanging vectors for boundry point approximations derivatives % Struct containging differentiation operators borrowing % Struct with borrowing limits for different norm matrices m % Number of grid points. h % Step size x % grid end methods function obj = D1_nonequidistant_minimal(m,L,order) if order == 4 [D1,H,grid,dx] = sbp.D1_minimal_4th_3BP_1shifts(m,L); elseif order == 6 [D1,H,grid,dx] = sbp.D1_minimal_6th_5BP_2shifts(m,L); elseif order == 8 [D1,H,grid,dx] = sbp.D1_minimal_8th_6BP_2shifts(m,L); elseif order == 10 [D1,H,grid,dx] = sbp.D1_minimal_10th_8BP_3shifts(m,L); elseif order == 12 [D1,H,grid,dx] = sbp.D1_minimal_12th_10BP_4shifts(m,L); else error('Invalid operator order %d.',order); end HI = inv(H); Q = H*D1; e_1 = sparse(m,1); e_m = sparse(m,1); e_1(1) = 1; e_m(m) = 1; obj.h = dx; obj.m = m; obj.x = grid; obj.norms.H = H; obj.norms.HI = HI; obj.norms.Q = Q; obj.boundary.e_1 = e_1; obj.boundary.e_m = e_m; obj.derivatives.D1 = D1; end end methods (Static) function lambda = smallestGrid(obj) error('Not implmented') end end end