Mercurial > repos > public > sbplib
view +scheme/Laplace1d.m @ 1044:5afc774fb7c4 feature/getBoundaryOp
Merge with default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 22 Jan 2019 16:50:50 +0100 |
parents | 8d73fcdb07a5 c12b84fe9b00 |
children | dc1bcbef2a86 |
line wrap: on
line source
classdef Laplace1d < scheme.Scheme properties grid order % Order accuracy for the approximation D % non-stabalized scheme operator H % Discrete norm M % Derivative norm a D2 Hi e_l e_r d_l d_r gamm end methods function obj = Laplace1d(grid, order, a) default_arg('a', 1); assertType(grid, 'grid.Cartesian'); ops = sbp.D2Standard(grid.size(), grid.lim{1}, order); obj.D2 = sparse(ops.D2); obj.H = sparse(ops.H); obj.Hi = sparse(ops.HI); obj.M = sparse(ops.M); obj.e_l = sparse(ops.e_l); obj.e_r = sparse(ops.e_r); obj.d_l = -sparse(ops.d1_l); obj.d_r = sparse(ops.d1_r); obj.grid = grid; obj.order = order; obj.a = a; obj.D = a*obj.D2; obj.gamm = grid.h*ops.borrowing.M.S; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type,data) default_arg('type','neumann'); default_arg('data',0); [e, d] = obj.getBoundaryOperator({'e', 'd'}, boundary); s = obj.getBoundarySign(boundary); switch type % Dirichlet boundary condition case {'D','dirichlet'} tuning = 1.1; tau1 = -tuning/obj.gamm; tau2 = 1; tau = tau1*e + tau2*d; closure = obj.a*obj.Hi*tau*e'; penalty = obj.a*obj.Hi*tau; % Neumann boundary condition case {'N','neumann'} tau = -e; closure = obj.a*obj.Hi*tau*d'; penalty = -obj.a*obj.Hi*tau; % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u, d_u] = obj.getBoundaryOperator({'e', 'd'}, boundary); s_u = obj.getBoundarySign(boundary); [e_v, d_v] = neighbour_scheme.getBoundaryOperator({'e', 'd'}, neighbour_boundary); s_v = neighbour_scheme.getBoundarySign(neighbour_boundary); a_u = obj.a; a_v = neighbour_scheme.a; gamm_u = obj.gamm; gamm_v = neighbour_scheme.gamm; tuning = 1.1; tau1 = -(a_u/gamm_u + a_v/gamm_v) * tuning; tau2 = 1/2*a_u; sig1 = -1/2; sig2 = 0; tau = tau1*e_u + tau2*d_u; sig = sig1*e_u + sig2*d_u; closure = obj.Hi*( tau*e_u' + sig*a_u*d_u'); penalty = obj.Hi*(-tau*e_v' + sig*a_v*d_v'); end % Returns the boundary operator op for the boundary specified by the string boundary. % op -- string or a cell array of strings % boundary -- string function varargout = getBoundaryOperator(obj, op, boundary) assertIsMember(boundary, {'l', 'r'}) if ~iscell(op) op = {op}; end for i = 1:numel(op) switch op{i} case 'e' switch boundary case 'l' e = obj.e_l; case 'r' e = obj.e_r; end varargout{i} = e; case 'd' switch boundary case 'l' d = obj.d_l; case 'r' d = obj.d_r; end varargout{i} = d; end end end % Returns the boundary sign. The right boundary is considered the positive boundary % boundary -- string function s = getBoundarySign(obj, boundary) assertIsMember(boundary, {'l', 'r'}) switch boundary case {'r'} s = 1; case {'l'} s = -1; end end function N = size(obj) N = obj.grid.size(); end end end