Mercurial > repos > public > sbplib
view +scheme/Wave2dCurve.m @ 1303:49e3870335ef feature/poroelastic
Make the hollow scheme generation more efficient by introducing the D2VariableHollow opSet
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Sat, 11 Jul 2020 06:54:15 -0700 |
parents | 706d1c2b4199 |
children |
line wrap: on
line source
classdef Wave2dCurve < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing grid order % Order accuracy for the approximation D % non-stabalized scheme operator M % Derivative norm c J, Ji a11, a12, a22 H % Discrete norm Hi H_u, H_v % Norms in the x and y directions Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. Hi_u, Hi_v Hiu, Hiv e_w, e_e, e_s, e_n du_w, dv_w du_e, dv_e du_s, dv_s du_n, dv_n gamm_u, gamm_v lambda Dx, Dy % Physical derivatives x_u x_v y_u y_v end methods function obj = Wave2dCurve(g ,order, c, opSet) default_arg('opSet',@sbp.D2Variable); default_arg('c', 1); warning('Use LaplaceCruveilinear instead') assert(isa(g, 'grid.Curvilinear')) m = g.size(); m_u = m(1); m_v = m(2); m_tot = g.N(); h = g.scaling(); h_u = h(1); h_v = h(2); % Operators ops_u = opSet(m_u, {0, 1}, order); ops_v = opSet(m_v, {0, 1}, order); I_u = speye(m_u); I_v = speye(m_v); D1_u = ops_u.D1; D2_u = ops_u.D2; H_u = ops_u.H; Hi_u = ops_u.HI; e_l_u = ops_u.e_l; e_r_u = ops_u.e_r; d1_l_u = ops_u.d1_l; d1_r_u = ops_u.d1_r; D1_v = ops_v.D1; D2_v = ops_v.D2; H_v = ops_v.H; Hi_v = ops_v.HI; e_l_v = ops_v.e_l; e_r_v = ops_v.e_r; d1_l_v = ops_v.d1_l; d1_r_v = ops_v.d1_r; Du = kr(D1_u,I_v); Dv = kr(I_u,D1_v); % Metric derivatives coords = g.points(); x = coords(:,1); y = coords(:,2); x_u = Du*x; x_v = Dv*x; y_u = Du*y; y_v = Dv*y; J = x_u.*y_v - x_v.*y_u; a11 = 1./J .* (x_v.^2 + y_v.^2); a12 = -1./J .* (x_u.*x_v + y_u.*y_v); a22 = 1./J .* (x_u.^2 + y_u.^2); lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2)); % Assemble full operators L_12 = spdiags(a12, 0, m_tot, m_tot); Duv = Du*L_12*Dv; Dvu = Dv*L_12*Du; Duu = sparse(m_tot); Dvv = sparse(m_tot); ind = grid.funcToMatrix(g, 1:m_tot); for i = 1:m_v D = D2_u(a11(ind(:,i))); p = ind(:,i); Duu(p,p) = D; end for i = 1:m_u D = D2_v(a22(ind(i,:))); p = ind(i,:); Dvv(p,p) = D; end obj.H = kr(H_u,H_v); obj.Hi = kr(Hi_u,Hi_v); obj.Hu = kr(H_u,I_v); obj.Hv = kr(I_u,H_v); obj.Hiu = kr(Hi_u,I_v); obj.Hiv = kr(I_u,Hi_v); obj.e_w = kr(e_l_u,I_v); obj.e_e = kr(e_r_u,I_v); obj.e_s = kr(I_u,e_l_v); obj.e_n = kr(I_u,e_r_v); obj.du_w = kr(d1_l_u,I_v); obj.dv_w = (obj.e_w'*Dv)'; obj.du_e = kr(d1_r_u,I_v); obj.dv_e = (obj.e_e'*Dv)'; obj.du_s = (obj.e_s'*Du)'; obj.dv_s = kr(I_u,d1_l_v); obj.du_n = (obj.e_n'*Du)'; obj.dv_n = kr(I_u,d1_r_v); obj.x_u = x_u; obj.x_v = x_v; obj.y_u = y_u; obj.y_v = y_v; obj.m = m; obj.h = [h_u h_v]; obj.order = order; obj.grid = g; obj.c = c; obj.J = spdiags(J, 0, m_tot, m_tot); obj.Ji = spdiags(1./J, 0, m_tot, m_tot); obj.a11 = a11; obj.a12 = a12; obj.a22 = a22; obj.D = obj.Ji*c^2*(Duu + Duv + Dvu + Dvv); obj.lambda = lambda; obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv; obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv; obj.gamm_u = h_u*ops_u.borrowing.M.d1; obj.gamm_v = h_v*ops_v.borrowing.M.d1; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) default_arg('type','neumann'); default_arg('parameter', []); [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv , ~, ~, ~, scale_factor] = obj.get_boundary_ops(boundary); switch type % Dirichlet boundary condition case {'D','d','dirichlet'} % v denotes the solution in the neighbour domain tuning = 1.2; % tuning = 20.2; [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t] = obj.get_boundary_ops(boundary); a_n = spdiag(coeff_n); a_t = spdiag(coeff_t); F = (s * a_n * d_n' + s * a_t*d_t')'; u = obj; b1 = gamm*u.lambda./u.a11.^2; b2 = gamm*u.lambda./u.a22.^2; tau = -1./b1 - 1./b2; tau = tuning * spdiag(tau); sig1 = 1; penalty_parameter_1 = halfnorm_inv_n*(tau + sig1*halfnorm_inv_t*F*e'*halfnorm_t)*e; closure = obj.Ji*obj.c^2 * penalty_parameter_1*e'; penalty = -obj.Ji*obj.c^2 * penalty_parameter_1; % Neumann boundary condition case {'N','n','neumann'} c = obj.c; a_n = spdiags(coeff_n,0,length(coeff_n),length(coeff_n)); a_t = spdiags(coeff_t,0,length(coeff_t),length(coeff_t)); d = (a_n * d_n' + a_t*d_t')'; tau1 = -s; tau2 = 0; tau = c.^2 * obj.Ji*(tau1*e + tau2*d); closure = halfnorm_inv*tau*d'; penalty = -halfnorm_inv*tau; % Characteristic boundary condition case {'characteristic', 'char', 'c'} default_arg('parameter', 1); beta = parameter; c = obj.c; a_n = spdiags(coeff_n,0,length(coeff_n),length(coeff_n)); a_t = spdiags(coeff_t,0,length(coeff_t),length(coeff_t)); d = s*(a_n * d_n' + a_t*d_t')'; % outward facing normal derivative tau = -c.^2 * 1/beta*obj.Ji*e; warning('is this right?! /c?') closure{1} = halfnorm_inv*tau/c*spdiag(scale_factor)*e'; closure{2} = halfnorm_inv*tau*beta*d'; penalty = -halfnorm_inv*tau; % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain tuning = 1.2; % tuning = 20.2; [e_u, d_n_u, d_t_u, coeff_n_u, coeff_t_u, s_u, gamm_u, halfnorm_inv_u_n, halfnorm_inv_u_t, halfnorm_u_t, I_u] = obj.get_boundary_ops(boundary); [e_v, d_n_v, d_t_v, coeff_n_v, coeff_t_v, s_v, gamm_v, halfnorm_inv_v_n, halfnorm_inv_v_t, halfnorm_v_t, I_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); a_n_u = spdiag(coeff_n_u); a_t_u = spdiag(coeff_t_u); a_n_v = spdiag(coeff_n_v); a_t_v = spdiag(coeff_t_v); F_u = (s_u * a_n_u * d_n_u' + s_u * a_t_u*d_t_u')'; F_v = (s_v * a_n_v * d_n_v' + s_v * a_t_v*d_t_v')'; u = obj; v = neighbour_scheme; b1_u = gamm_u*u.lambda(I_u)./u.a11(I_u).^2; b2_u = gamm_u*u.lambda(I_u)./u.a22(I_u).^2; b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2; b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2; tau = -1./(4*b1_u) -1./(4*b1_v) -1./(4*b2_u) -1./(4*b2_v); tau = tuning * spdiag(tau); sig1 = 1/2; sig2 = -1/2; penalty_parameter_1 = halfnorm_inv_u_n*(e_u*tau + sig1*halfnorm_inv_u_t*F_u*e_u'*halfnorm_u_t*e_u); penalty_parameter_2 = halfnorm_inv_u_n * sig2 * e_u; closure = obj.Ji*obj.c^2 * ( penalty_parameter_1*e_u' + penalty_parameter_2*F_u'); penalty = obj.Ji*obj.c^2 * (-penalty_parameter_1*e_v' + penalty_parameter_2*F_v'); end % Ruturns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary % % I -- the indecies of the boundary points in the grid matrix function [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t, I, scale_factor] = get_boundary_ops(obj, boundary) % gridMatrix = zeros(obj.m(2),obj.m(1)); % gridMatrix(:) = 1:numel(gridMatrix); ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m)); switch boundary case 'w' e = obj.e_w; d_n = obj.du_w; d_t = obj.dv_w; s = -1; I = ind(1,:); coeff_n = obj.a11(I); coeff_t = obj.a12(I); scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2); case 'e' e = obj.e_e; d_n = obj.du_e; d_t = obj.dv_e; s = 1; I = ind(end,:); coeff_n = obj.a11(I); coeff_t = obj.a12(I); scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2); case 's' e = obj.e_s; d_n = obj.dv_s; d_t = obj.du_s; s = -1; I = ind(:,1)'; coeff_n = obj.a22(I); coeff_t = obj.a12(I); scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2); case 'n' e = obj.e_n; d_n = obj.dv_n; d_t = obj.du_n; s = 1; I = ind(:,end)'; coeff_n = obj.a22(I); coeff_t = obj.a12(I); scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2); otherwise error('No such boundary: boundary = %s',boundary); end switch boundary case {'w','e'} halfnorm_inv_n = obj.Hiu; halfnorm_inv_t = obj.Hiv; halfnorm_t = obj.Hv; gamm = obj.gamm_u; case {'s','n'} halfnorm_inv_n = obj.Hiv; halfnorm_inv_t = obj.Hiu; halfnorm_t = obj.Hu; gamm = obj.gamm_v; end end function N = size(obj) N = prod(obj.m); end end end