Mercurial > repos > public > sbplib
view +scheme/Schrodinger2dCurve.m @ 497:4905446f165e feature/quantumTriangles
Added 2D interface to shrodinger
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Sat, 25 Feb 2017 12:44:01 +0100 |
parents | 6b8297f66c91 |
children | 324c927d8b1d |
line wrap: on
line source
classdef Schrodinger2dCurve < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing grid xm, ym order % Order accuracy for the approximation D % non-stabalized scheme operator M % Derivative norm H % Discrete norm Hi H_u, H_v % Norms in the x and y directions Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. Hi_u, Hi_v Hiu, Hiv D1_v, D1_u D2_v, D2_u Du, Dv x,y b1, b2 b1_u,b2_v DU, DV, DUU, DUV, DVU, DVV e_w, e_e, e_s, e_n du_w, dv_w du_e, dv_e du_s, dv_s du_n, dv_n g_1, g_2 c ind t_up a11, a12, a22 m_tot, m_u, m_v p Ji end methods function obj = Schrodinger2dCurve(g ,order, opSet,p) default_arg('opSet',@sbp.D2Variable); default_arg('c', 1); obj.p=p; obj.c=1; m = g.size(); obj.m_u = m(1); obj.m_v = m(2); obj.m_tot = g.N(); obj.grid=g; h = g.scaling(); h_u = h(1); h_v = h(2); % Operators ops_u = opSet(obj.m_u, {0, 1}, order); ops_v = opSet(obj.m_v, {0, 1}, order); I_u = speye(obj.m_u); I_v = speye(obj.m_v); obj.D1_u = ops_u.D1; obj.D2_u = ops_u.D2; H_u = ops_u.H; Hi_u = ops_u.HI; e_l_u = ops_u.e_l; e_r_u = ops_u.e_r; d1_l_u = ops_u.d1_l; d1_r_u = ops_u.d1_r; obj.D1_v = ops_v.D1; obj.D2_v = ops_v.D2; H_v = ops_v.H; Hi_v = ops_v.HI; e_l_v = ops_v.e_l; e_r_v = ops_v.e_r; d1_l_v = ops_v.d1_l; d1_r_v = ops_v.d1_r; obj.Du = kr(obj.D1_u,I_v); obj.Dv = kr(I_u,obj.D1_v); obj.H = kr(H_u,H_v); obj.Hi = kr(Hi_u,Hi_v); obj.Hu = kr(H_u,I_v); obj.Hv = kr(I_u,H_v); obj.Hiu = kr(Hi_u,I_v); obj.Hiv = kr(I_u,Hi_v); obj.e_w = kr(e_l_u,I_v); obj.e_e = kr(e_r_u,I_v); obj.e_s = kr(I_u,e_l_v); obj.e_n = kr(I_u,e_r_v); obj.du_w = kr(d1_l_u,I_v); obj.dv_w = (obj.e_w'*obj.Dv)'; obj.du_e = kr(d1_r_u,I_v); obj.dv_e = (obj.e_e'*obj.Dv)'; obj.du_s = (obj.e_s'*obj.Du)'; obj.dv_s = kr(I_u,d1_l_v); obj.du_n = (obj.e_n'*obj.Du)'; obj.dv_n = kr(I_u,d1_r_v); obj.DUU = sparse(obj.m_tot); obj.DVV = sparse(obj.m_tot); obj.ind = grid.funcToMatrix(obj.grid, 1:obj.m_tot); obj.m = m; obj.h = [h_u h_v]; obj.order = order; obj.D = @(t)obj.d_fun(t); obj.variable_update(0); end function [D] = d_fun(obj,t) % obj.update_vairables(t); In driscretization? D = obj.Ji*(-1/2*(obj.b1*obj.Du-obj.b1_u+obj.Du*obj.b1) - 1/2*(obj.b2*obj.Dv - obj.b2_v +obj.Dv*obj.b2) + 1i*obj.c^2*(obj.DUU + obj.DUV + obj.DVU + obj.DVV)); end function [D ]= variable_update(obj,t) % Metric derivatives if(obj.t_up == t) return else ti = parametrization.Ti.points(obj.p{1}(t),obj.p{2}(t),obj.p{3}(t),obj.p{4}(t)); ti_tau = parametrization.Ti.points(obj.p{5}(t),obj.p{6}(t),obj.p{7}(t),obj.p{8}(t)); lcoords=points(obj.grid); [obj.xm,obj.ym]= ti.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_u,2)); [x_tau,y_tau]= ti_tau.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_u,2)); x = reshape(obj.xm,obj.m_tot,1); y = reshape(obj.ym,obj.m_tot,1); obj.x = x; obj.y = y; x_tau = reshape(x_tau,obj.m_tot,1); y_tau = reshape(y_tau,obj.m_tot,1); x_u = obj.Du*x; x_v = obj.Dv*x; y_u = obj.Du*y; y_v = obj.Dv*y; J = x_u.*y_v - x_v.*y_u; a11 = 1./J.* (x_v.^2 + y_v.^2); a12 = -1./J .* (x_u.*x_v + y_u.*y_v); a22 = 1./J .* (x_u.^2 + y_u.^2); obj.a11 = a11; obj.a12 = a12; obj.a22 = a22; % Assemble full operators L_12 = spdiags(a12, 0, obj.m_tot, obj.m_tot); obj.DUV = obj.Du*L_12*obj.Dv; obj.DVU = obj.Dv*L_12*obj.Du; for i = 1:obj.m_v D = obj.D2_u(a11(obj.ind(:,i))); p = obj.ind(:,i); obj.DUU(p,p) = D; end for i = 1:obj.m_u D = obj.D2_v(a22(obj.ind(i,:))); p = obj.ind(i,:); obj.DVV(p,p) = D; end Ji = spdiags(1./J, 0, obj.m_tot, obj.m_tot); obj.Ji = Ji; obj.g_1 = x_v.*y_tau-x_tau.*y_v; obj.g_2 = x_tau.*y_u - y_tau.*x_u; obj.b1 = spdiags(obj.g_1, 0, obj.m_tot, obj.m_tot); obj.b2 = spdiags(obj.g_2, 0, obj.m_tot, obj.m_tot); obj.b1_u = spdiags(obj.Du*obj.g_1, 0, obj.m_tot, obj.m_tot); obj.b2_v = spdiags(obj.Dv*obj.g_2, 0, obj.m_tot, obj.m_tot); obj.t_up=t; end end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj, boundary,~) [e, d_n, d_t, coeff_t, coeff_n s, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t,g] = obj.get_boundary_ops(boundary); a_t = spdiag(coeff_t); a_n = spdiag(coeff_n); F = (s * a_n *d_n' + s * a_t*d_t')'; tau1 = 1; a = spdiag(g); tau2 = (-1*s*a - abs(a))/4; penalty_parameter_1 = @(t) 1*1i*halfnorm_inv_n*halfnorm_inv_t*F*e'*halfnorm_t*e; penalty_parameter_2 = @(t) halfnorm_inv_n*e*tau2; closure = @(t) obj.Ji*obj.c^2 * penalty_parameter_1(t)*e' + obj.Ji* penalty_parameter_2(t)*e'; penalty = @(t) -obj.Ji*obj.c^2 * penalty_parameter_1(t)*e'+ obj.Ji*penalty_parameter_2(t)*e'; end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u, d_n_u, d_t_u, coeff_t_u, coeff_n_u,s_u, halfnorm_inv_u_n, halfnorm_inv_u_t, halfnorm_u_t,gamm_u, I_u] = obj.get_boundary_ops(boundary); [e_v, d_n_v, d_t_v, coeff_t_v, coeff_n_v s_v, halfnorm_inv_v_n, halfnorm_inv_v_t, halfnorm_v_t,gamm_v, I_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); a_n_u = spdiag(coeff_n_u); a_t_u = spdiag(coeff_t_u); a_n_v = spdiag(coeff_n_v); a_t_v = spdiag(coeff_t_v); F_u = (s_u * a_n_u * d_n_u' + s_u * a_t_u*d_t_u')'; F_v = (s_v * a_n_v * d_n_v' + s_v * a_t_v*d_t_v')'; a = spdiag(gamm_u); u = obj; v = neighbour_scheme; tau = -1/2*1i; sig = 1/2*1i; gamm = (-1*s_u*a)/2; penalty_parameter_1 =@(t) halfnorm_inv_u_n*(e_u*tau + sig*halfnorm_inv_u_t*F_u*e_u'*halfnorm_u_t*e_u); penalty_parameter_2 =@(t) halfnorm_inv_u_n * e_u * (-sig + gamm ); closure =@(t) obj.Ji*obj.c^2 * ( penalty_parameter_1(t)*e_u' + penalty_parameter_2(t)*F_u'); penalty =@(t) obj.Ji*obj.c^2 * (-penalty_parameter_1(t)*e_v' + penalty_parameter_2(t)*F_v'); end function [e, d_n, d_t, coeff_t,coeff_n, s, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t,g, I] = get_boundary_ops(obj, boundary) % gridMatrix = zeros(obj.m(2),obj.m(1)); % gridMatrix(:) = 1:numel(gridMatrix); ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m)); switch boundary case 'w' e = obj.e_w; d_n = obj.du_w; d_t = obj.dv_w; s = -1; I = ind(1,:); coeff_t = obj.a12(I); coeff_n = obj.a11(I); g=obj.g_1(I); case 'e' e = obj.e_e; d_n = obj.du_e; d_t = obj.dv_e; s = 1; I = ind(end,:); coeff_t = obj.a12(I); coeff_n = obj.a11(I); g=obj.g_1(I); case 's' e = obj.e_s; d_n = obj.dv_s; d_t = obj.du_s; s = -1; I = ind(:,1)'; coeff_t = obj.a12(I); coeff_n = obj.a11(I); g=obj.g_2(I); case 'n' e = obj.e_n; d_n = obj.dv_n; d_t = obj.du_n; s = 1; I = ind(:,end)'; coeff_t = obj.a12(I); coeff_n = obj.a11(I); g=obj.g_2(I); otherwise error('No such boundary: boundary = %s',boundary); end switch boundary case {'w','e'} halfnorm_inv_n = obj.Hiu; halfnorm_inv_t = obj.Hiv; halfnorm_t = obj.Hv; case {'s','n'} halfnorm_inv_n = obj.Hiv; halfnorm_inv_t = obj.Hiu; halfnorm_t = obj.Hu; end end function N = size(obj) N = prod(obj.m); end end end