Mercurial > repos > public > sbplib
view +scheme/Wave.m @ 389:42c89b5eedc0 feature/beams
Add borrowing constants for D2 operators in D4Variable
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 10 Jan 2017 17:31:28 +0100 |
parents | cb2b12246b7e |
children | 459eeb99130f |
line wrap: on
line source
classdef Wave < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing x % Grid order % Order accuracy for the approximation D % non-stabalized scheme operator H % Discrete norm M % Derivative norm alpha D2 Hi e_l e_r d1_l d1_r gamm end methods function obj = Wave(m,xlim,order,alpha) default_arg('a',1); [x, h] = util.get_grid(xlim{:},m); ops = sbp.Ordinary(m,h,order); obj.D2 = sparse(ops.derivatives.D2); obj.H = sparse(ops.norms.H); obj.Hi = sparse(ops.norms.HI); obj.M = sparse(ops.norms.M); obj.e_l = sparse(ops.boundary.e_1); obj.e_r = sparse(ops.boundary.e_m); obj.d1_l = sparse(ops.boundary.S_1); obj.d1_r = sparse(ops.boundary.S_m); obj.m = m; obj.h = h; obj.order = order; obj.alpha = alpha; obj.D = alpha*obj.D2; obj.x = x; obj.gamm = h*ops.borrowing.M.S; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type,data) default_arg('type','neumann'); default_arg('data',0); [e,d,s] = obj.get_boundary_ops(boundary); switch type % Dirichlet boundary condition case {'D','dirichlet'} alpha = obj.alpha; % tau1 < -alpha^2/gamma tuning = 1.1; tau1 = -tuning*alpha/obj.gamm; tau2 = s*alpha; p = tau1*e + tau2*d; closure = obj.Hi*p*e'; pp = obj.Hi*p; switch class(data) case 'double' penalty = pp*data; case 'function_handle' penalty = @(t)pp*data(t); otherwise error('Wierd data argument!') end % Neumann boundary condition case {'N','neumann'} alpha = obj.alpha; tau1 = -s*alpha; tau2 = 0; tau = tau1*e + tau2*d; closure = obj.Hi*tau*d'; pp = obj.Hi*tau; switch class(data) case 'double' penalty = pp*data; case 'function_handle' penalty = @(t)pp*data(t); otherwise error('Wierd data argument!') end % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u,d_u,s_u] = obj.get_boundary_ops(boundary); [e_v,d_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); tuning = 1.1; alpha_u = obj.alpha; alpha_v = neighbour_scheme.alpha; gamm_u = obj.gamm; gamm_v = neighbour_scheme.gamm; % tau1 < -(alpha_u/gamm_u + alpha_v/gamm_v) tau1 = -(alpha_u/gamm_u + alpha_v/gamm_v) * tuning; tau2 = s_u*1/2*alpha_u; sig1 = s_u*(-1/2); sig2 = 0; tau = tau1*e_u + tau2*d_u; sig = sig1*e_u + sig2*d_u; closure = obj.Hi*( tau*e_u' + sig*alpha_u*d_u'); penalty = obj.Hi*(-tau*e_v' - sig*alpha_v*d_v'); end % Ruturns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary function [e,d,s] = get_boundary_ops(obj,boundary) switch boundary case 'l' e = obj.e_l; d = obj.d1_l; s = -1; case 'r' e = obj.e_r; d = obj.d1_r; s = 1; otherwise error('No such boundary: boundary = %s',boundary); end end function N = size(obj) N = obj.m; end end methods(Static) % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u % and bound_v of scheme schm_v. % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); end end end