Mercurial > repos > public > sbplib
view +sbp/+implementations/d1_noneq_6.m @ 1322:412b8ceafbc6 feature/poroelastic
Add Zt to output args for Elastic2dCurvilinearAnisotropic.interfaceNormalTangential
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Sat, 24 Oct 2020 20:58:26 -0700 |
parents | f7ac3cd6eeaa |
children | 4cb627c7fb90 |
line wrap: on
line source
function [D1,H,x,h] = d1_noneq_6(N,L) % L: Domain length % N: Number of grid points if(nargin < 2) L = 1; end if(N<12) error('Operator requires at least 12 grid points'); end % BP: Number of boundary points % m: Number of nonequidistant spacings % order: Accuracy of interior stencil BP = 6; m = 3; order = 6; %%%% Non-equidistant grid points %%%%% x0 = 0.0000000000000e+00; x1 = 4.4090263368623e-01; x2 = 1.2855984345073e+00; x3 = 2.2638953951239e+00; x4 = 3.2638953951239e+00; x5 = 4.2638953951239e+00; x6 = 5.2638953951239e+00; xb = sparse(m+1,1); for i = 0:m xb(i+1) = eval(['x' num2str(i)]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Compute h %%%%%%%%%% h = L/(2*xb(end) + N-1-2*m); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Define grid %%%%%%%% x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Norm matrix %%%%%%%% P = sparse(BP,1); %#ok<*NASGU> P0 = 1.3030223027124e-01; P1 = 6.8851501587715e-01; P2 = 9.5166202564389e-01; P3 = 9.9103890475697e-01; P4 = 1.0028757074552e+00; P5 = 9.9950151111941e-01; for i = 0:BP-1 P(i+1) = eval(['P' num2str(i)]); end H = ones(N,1); H(1:BP) = P; H(end-BP+1:end) = flip(P); H = spdiags(h*H,0,N,N); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Q matrix %%%%%%%%%%% % interior stencil switch order case 2 d = [-1/2,0,1/2]; case 4 d = [1/12,-2/3,0,2/3,-1/12]; case 6 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; case 8 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; case 10 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; case 12 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; end d = repmat(d,N,1); Q = spdiags(d,-order/2:order/2,N,N); % Boundaries Q0_0 = -5.0000000000000e-01; Q0_1 = 6.6042071945824e-01; Q0_2 = -2.2104152954203e-01; Q0_3 = 7.6243679810093e-02; Q0_4 = -1.7298206716724e-02; Q0_5 = 1.6753369904210e-03; Q0_6 = 0.0000000000000e+00; Q0_7 = 0.0000000000000e+00; Q0_8 = 0.0000000000000e+00; Q1_0 = -6.6042071945824e-01; Q1_1 = 0.0000000000000e+00; Q1_2 = 8.7352798702787e-01; Q1_3 = -2.6581719253084e-01; Q1_4 = 5.7458484948314e-02; Q1_5 = -4.7485599871040e-03; Q1_6 = 0.0000000000000e+00; Q1_7 = 0.0000000000000e+00; Q1_8 = 0.0000000000000e+00; Q2_0 = 2.2104152954203e-01; Q2_1 = -8.7352798702787e-01; Q2_2 = 0.0000000000000e+00; Q2_3 = 8.1707122038457e-01; Q2_4 = -1.8881125503769e-01; Q2_5 = 2.4226492138960e-02; Q2_6 = 0.0000000000000e+00; Q2_7 = 0.0000000000000e+00; Q2_8 = 0.0000000000000e+00; Q3_0 = -7.6243679810093e-02; Q3_1 = 2.6581719253084e-01; Q3_2 = -8.1707122038457e-01; Q3_3 = 0.0000000000000e+00; Q3_4 = 7.6798636652679e-01; Q3_5 = -1.5715532552963e-01; Q3_6 = 1.6666666666667e-02; Q3_7 = 0.0000000000000e+00; Q3_8 = 0.0000000000000e+00; Q4_0 = 1.7298206716724e-02; Q4_1 = -5.7458484948314e-02; Q4_2 = 1.8881125503769e-01; Q4_3 = -7.6798636652679e-01; Q4_4 = 0.0000000000000e+00; Q4_5 = 7.5266872305402e-01; Q4_6 = -1.5000000000000e-01; Q4_7 = 1.6666666666667e-02; Q4_8 = 0.0000000000000e+00; Q5_0 = -1.6753369904210e-03; Q5_1 = 4.7485599871040e-03; Q5_2 = -2.4226492138960e-02; Q5_3 = 1.5715532552963e-01; Q5_4 = -7.5266872305402e-01; Q5_5 = 0.0000000000000e+00; Q5_6 = 7.5000000000000e-01; Q5_7 = -1.5000000000000e-01; Q5_8 = 1.6666666666667e-02; for i = 1:BP for j = 1:BP Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); end end %%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Difference operator %% D1 = H\Q; %%%%%%%%%%%%%%%%%%%%%%%%%%%