Mercurial > repos > public > sbplib
view +scheme/Schrodinger2d.m @ 920:386ef449df51 feature/d1_staggered
Merge with default.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Wed, 28 Nov 2018 17:35:19 -0800 |
parents | f4595f14d696 |
children | 459eeb99130f |
line wrap: on
line source
classdef Schrodinger2d < scheme.Scheme % Discretizes the Laplacian with constant coefficent, % in the Schrödinger equation way (i.e., the discretization matrix is not necessarily % definite) % u_t = a*i*Laplace u % opSet should be cell array of opSets, one per dimension. This % is useful if we have periodic BC in one direction. properties m % Number of points in each direction, possibly a vector h % Grid spacing grid dim order % Order of accuracy for the approximation % Diagonal matrix for variable coefficients a % Constant coefficient D % Total operator D1 % First derivatives % Second derivatives D2 H, Hi % Inner products e_l, e_r d1_l, d1_r % Normal derivatives at the boundary e_w, e_e, e_s, e_n d_w, d_e, d_s, d_n H_boundary % Boundary inner products interpolation_type % MC or AWW end methods function obj = Schrodinger2d(g ,order, a, opSet, interpolation_type) default_arg('interpolation_type','AWW'); default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable}); default_arg('a',1); dim = 2; assert(isa(g, 'grid.Cartesian')) if isa(a, 'function_handle') a = grid.evalOn(g, a); a = spdiag(a); end m = g.size(); m_tot = g.N(); h = g.scaling(); xlim = {g.x{1}(1), g.x{1}(end)}; ylim = {g.x{2}(1), g.x{2}(end)}; lim = {xlim, ylim}; % 1D operators ops = cell(dim,1); for i = 1:dim ops{i} = opSet{i}(m(i), lim{i}, order); end I = cell(dim,1); D1 = cell(dim,1); D2 = cell(dim,1); H = cell(dim,1); Hi = cell(dim,1); e_l = cell(dim,1); e_r = cell(dim,1); d1_l = cell(dim,1); d1_r = cell(dim,1); for i = 1:dim I{i} = speye(m(i)); D1{i} = ops{i}.D1; D2{i} = ops{i}.D2; H{i} = ops{i}.H; Hi{i} = ops{i}.HI; e_l{i} = ops{i}.e_l; e_r{i} = ops{i}.e_r; d1_l{i} = ops{i}.d1_l; d1_r{i} = ops{i}.d1_r; end % Constant coeff D2 for i = 1:dim D2{i} = D2{i}(ones(m(i),1)); end %====== Assemble full operators ======== obj.D1 = cell(dim,1); obj.D2 = cell(dim,1); obj.e_l = cell(dim,1); obj.e_r = cell(dim,1); obj.d1_l = cell(dim,1); obj.d1_r = cell(dim,1); % D1 obj.D1{1} = kron(D1{1},I{2}); obj.D1{2} = kron(I{1},D1{2}); % Boundary operators obj.e_l{1} = kron(e_l{1},I{2}); obj.e_l{2} = kron(I{1},e_l{2}); obj.e_r{1} = kron(e_r{1},I{2}); obj.e_r{2} = kron(I{1},e_r{2}); obj.d1_l{1} = kron(d1_l{1},I{2}); obj.d1_l{2} = kron(I{1},d1_l{2}); obj.d1_r{1} = kron(d1_r{1},I{2}); obj.d1_r{2} = kron(I{1},d1_r{2}); % D2 obj.D2{1} = kron(D2{1},I{2}); obj.D2{2} = kron(I{1},D2{2}); % Quadratures obj.H = kron(H{1},H{2}); obj.Hi = inv(obj.H); obj.H_boundary = cell(dim,1); obj.H_boundary{1} = H{2}; obj.H_boundary{2} = H{1}; % Differentiation matrix D (without SAT) D2 = obj.D2; D = sparse(m_tot,m_tot); for j = 1:dim D = D + a*1i*D2{j}; end obj.D = D; %=========================================% % Misc. obj.m = m; obj.h = h; obj.order = order; obj.grid = g; obj.dim = dim; obj.a = a; obj.e_w = obj.e_l{1}; obj.e_e = obj.e_r{1}; obj.e_s = obj.e_l{2}; obj.e_n = obj.e_r{2}; obj.d_w = obj.d1_l{1}; obj.d_e = obj.d1_r{1}; obj.d_s = obj.d1_l{2}; obj.d_n = obj.d1_r{2}; obj.interpolation_type = interpolation_type; end % Closure functions return the operators applied to the own domain to close the boundary % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) default_arg('type','Neumann'); default_arg('parameter', []); % j is the coordinate direction of the boundary % nj: outward unit normal component. % nj = -1 for west, south, bottom boundaries % nj = 1 for east, north, top boundaries [j, nj] = obj.get_boundary_number(boundary); switch nj case 1 e = obj.e_r; d = obj.d1_r; case -1 e = obj.e_l; d = obj.d1_l; end Hi = obj.Hi; H_gamma = obj.H_boundary{j}; a = e{j}'*obj.a*e{j}; switch type % Dirichlet boundary condition case {'D','d','dirichlet','Dirichlet'} closure = nj*Hi*d{j}*a*1i*H_gamma*(e{j}' ); penalty = -nj*Hi*d{j}*a*1i*H_gamma; % Free boundary condition case {'N','n','neumann','Neumann'} closure = -nj*Hi*e{j}*a*1i*H_gamma*(d{j}' ); penalty = nj*Hi*e{j}*a*1i*H_gamma; % Unknown boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain % Get neighbour boundary operator [coord_nei, n_nei] = get_boundary_number(obj, neighbour_boundary); [coord, n] = get_boundary_number(obj, boundary); switch n_nei case 1 % North or east boundary e_neighbour = neighbour_scheme.e_r; d_neighbour = neighbour_scheme.d1_r; case -1 % South or west boundary e_neighbour = neighbour_scheme.e_l; d_neighbour = neighbour_scheme.d1_l; end e_neighbour = e_neighbour{coord_nei}; d_neighbour = d_neighbour{coord_nei}; H_gamma = obj.H_boundary{coord}; Hi = obj.Hi; a = obj.a; switch coord_nei case 1 m_neighbour = neighbour_scheme.m(2); case 2 m_neighbour = neighbour_scheme.m(1); end switch coord case 1 m = obj.m(2); case 2 m = obj.m(1); end switch n case 1 % North or east boundary e = obj.e_r; d = obj.d1_r; case -1 % South or west boundary e = obj.e_l; d = obj.d1_l; end e = e{coord}; d = d{coord}; Hi = obj.Hi; sigma = -n*1i*a/2; tau = -n*(1i*a)'/2; grid_ratio = m/m_neighbour; if grid_ratio ~= 1 [ms, index] = sort([m, m_neighbour]); orders = [obj.order, neighbour_scheme.order]; orders = orders(index); switch obj.interpolation_type case 'MC' interpOpSet = sbp.InterpMC(ms(1),ms(2),orders(1),orders(2)); if grid_ratio < 1 I_neighbour2local_e = interpOpSet.IF2C; I_neighbour2local_d = interpOpSet.IF2C; I_local2neighbour_e = interpOpSet.IC2F; I_local2neighbour_d = interpOpSet.IC2F; elseif grid_ratio > 1 I_neighbour2local_e = interpOpSet.IC2F; I_neighbour2local_d = interpOpSet.IC2F; I_local2neighbour_e = interpOpSet.IF2C; I_local2neighbour_d = interpOpSet.IF2C; end case 'AWW' %String 'C2F' indicates that ICF2 is more accurate. interpOpSetF2C = sbp.InterpAWW(ms(1),ms(2),orders(1),orders(2),'F2C'); interpOpSetC2F = sbp.InterpAWW(ms(1),ms(2),orders(1),orders(2),'C2F'); if grid_ratio < 1 % Local is coarser than neighbour I_neighbour2local_e = interpOpSetF2C.IF2C; I_neighbour2local_d = interpOpSetC2F.IF2C; I_local2neighbour_e = interpOpSetC2F.IC2F; I_local2neighbour_d = interpOpSetF2C.IC2F; elseif grid_ratio > 1 % Local is finer than neighbour I_neighbour2local_e = interpOpSetC2F.IC2F; I_neighbour2local_d = interpOpSetF2C.IC2F; I_local2neighbour_e = interpOpSetF2C.IF2C; I_local2neighbour_d = interpOpSetC2F.IF2C; end otherwise error(['Interpolation type ' obj.interpolation_type ... ' is not available.' ]); end else % No interpolation required I_neighbour2local_e = speye(m,m); I_neighbour2local_d = speye(m,m); I_local2neighbour_e = speye(m,m); I_local2neighbour_d = speye(m,m); end closure = tau*Hi*d*H_gamma*e' + sigma*Hi*e*H_gamma*d'; penalty = -tau*Hi*d*H_gamma*I_neighbour2local_e*e_neighbour' ... -sigma*Hi*e*H_gamma*I_neighbour2local_d*d_neighbour'; end % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. function [j, nj] = get_boundary_number(obj, boundary) switch boundary case {'w','W','west','West', 'e', 'E', 'east', 'East'} j = 1; case {'s','S','south','South', 'n', 'N', 'north', 'North'} j = 2; otherwise error('No such boundary: boundary = %s',boundary); end switch boundary case {'w','W','west','West','s','S','south','South'} nj = -1; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} nj = 1; end end % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. function [return_op] = get_boundary_operator(obj, op, boundary) switch boundary case {'w','W','west','West', 'e', 'E', 'east', 'East'} j = 1; case {'s','S','south','South', 'n', 'N', 'north', 'North'} j = 2; otherwise error('No such boundary: boundary = %s',boundary); end switch op case 'e' switch boundary case {'w','W','west','West','s','S','south','South'} return_op = obj.e_l{j}; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} return_op = obj.e_r{j}; end case 'd' switch boundary case {'w','W','west','West','s','S','south','South'} return_op = obj.d1_l{j}; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} return_op = obj.d1_r{j}; end otherwise error(['No such operator: operator = ' op]); end end function N = size(obj) N = prod(obj.m); end end end