Mercurial > repos > public > sbplib
view +scheme/Elastic2dVariable.m @ 726:37d5d69b1a0d feature/poroelastic
Refactor BC code in Elastic2dVariable
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Thu, 19 Apr 2018 17:06:27 -0700 |
parents | 60eb7f46d8d9 |
children | 6d5953fc090e |
line wrap: on
line source
classdef Elastic2dVariable < scheme.Scheme % Discretizes the elastic wave equation: % rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i % opSet should be cell array of opSets, one per dimension. This % is useful if we have periodic BC in one direction. properties m % Number of points in each direction, possibly a vector h % Grid spacing grid dim order % Order of accuracy for the approximation % Diagonal matrices for varible coefficients LAMBDA % Variable coefficient, related to dilation MU % Shear modulus, variable coefficient RHO, RHOi % Density, variable D % Total operator D1 % First derivatives % Second derivatives D2_lambda D2_mu % Traction operators used for BC T_l, T_r tau_l, tau_r H, Hi % Inner products phi % Borrowing constant for (d1 - e^T*D1) from R gamma % Borrowing constant for d1 from M H11 % First element of H e_l, e_r d1_l, d1_r % Normal derivatives at the boundary E % E{i}^T picks out component i H_boundary % Boundary inner products % Kroneckered norms and coefficients RHOi_kron Hi_kron end methods function obj = Elastic2dVariable(g ,order, lambda_fun, mu_fun, rho_fun, opSet) default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable}); default_arg('lambda_fun', @(x,y) 0*x+1); default_arg('mu_fun', @(x,y) 0*x+1); default_arg('rho_fun', @(x,y) 0*x+1); dim = 2; assert(isa(g, 'grid.Cartesian')) lambda = grid.evalOn(g, lambda_fun); mu = grid.evalOn(g, mu_fun); rho = grid.evalOn(g, rho_fun); m = g.size(); m_tot = g.N(); h = g.scaling(); lim = g.lim; % 1D operators ops = cell(dim,1); for i = 1:dim ops{i} = opSet{i}(m(i), lim{i}, order); end % Borrowing constants for i = 1:dim beta = ops{i}.borrowing.R.delta_D; obj.H11{i} = ops{i}.borrowing.H11; obj.phi{i} = beta/obj.H11{i}; obj.gamma{i} = ops{i}.borrowing.M.d1; end I = cell(dim,1); D1 = cell(dim,1); D2 = cell(dim,1); H = cell(dim,1); Hi = cell(dim,1); e_l = cell(dim,1); e_r = cell(dim,1); d1_l = cell(dim,1); d1_r = cell(dim,1); for i = 1:dim I{i} = speye(m(i)); D1{i} = ops{i}.D1; D2{i} = ops{i}.D2; H{i} = ops{i}.H; Hi{i} = ops{i}.HI; e_l{i} = ops{i}.e_l; e_r{i} = ops{i}.e_r; d1_l{i} = ops{i}.d1_l; d1_r{i} = ops{i}.d1_r; end %====== Assemble full operators ======== LAMBDA = spdiag(lambda); obj.LAMBDA = LAMBDA; MU = spdiag(mu); obj.MU = MU; RHO = spdiag(rho); obj.RHO = RHO; obj.RHOi = inv(RHO); obj.D1 = cell(dim,1); obj.D2_lambda = cell(dim,1); obj.D2_mu = cell(dim,1); obj.e_l = cell(dim,1); obj.e_r = cell(dim,1); obj.d1_l = cell(dim,1); obj.d1_r = cell(dim,1); % D1 obj.D1{1} = kron(D1{1},I{2}); obj.D1{2} = kron(I{1},D1{2}); % Boundary operators obj.e_l{1} = kron(e_l{1},I{2}); obj.e_l{2} = kron(I{1},e_l{2}); obj.e_r{1} = kron(e_r{1},I{2}); obj.e_r{2} = kron(I{1},e_r{2}); obj.d1_l{1} = kron(d1_l{1},I{2}); obj.d1_l{2} = kron(I{1},d1_l{2}); obj.d1_r{1} = kron(d1_r{1},I{2}); obj.d1_r{2} = kron(I{1},d1_r{2}); % D2 for i = 1:dim obj.D2_lambda{i} = sparse(m_tot); obj.D2_mu{i} = sparse(m_tot); end ind = grid.funcToMatrix(g, 1:m_tot); for i = 1:m(2) D_lambda = D2{1}(lambda(ind(:,i))); D_mu = D2{1}(mu(ind(:,i))); p = ind(:,i); obj.D2_lambda{1}(p,p) = D_lambda; obj.D2_mu{1}(p,p) = D_mu; end for i = 1:m(1) D_lambda = D2{2}(lambda(ind(i,:))); D_mu = D2{2}(mu(ind(i,:))); p = ind(i,:); obj.D2_lambda{2}(p,p) = D_lambda; obj.D2_mu{2}(p,p) = D_mu; end % Quadratures obj.H = kron(H{1},H{2}); obj.Hi = inv(obj.H); obj.H_boundary = cell(dim,1); obj.H_boundary{1} = H{2}; obj.H_boundary{2} = H{1}; % E{i}^T picks out component i. E = cell(dim,1); I = speye(m_tot,m_tot); for i = 1:dim e = sparse(dim,1); e(i) = 1; E{i} = kron(I,e); end obj.E = E; % Differentiation matrix D (without SAT) D2_lambda = obj.D2_lambda; D2_mu = obj.D2_mu; D1 = obj.D1; D = sparse(dim*m_tot,dim*m_tot); d = @kroneckerDelta; % Kronecker delta db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta for i = 1:dim for j = 1:dim D = D + E{i}*inv(RHO)*( d(i,j)*D2_lambda{i}*E{j}' +... db(i,j)*D1{i}*LAMBDA*D1{j}*E{j}' ... ); D = D + E{i}*inv(RHO)*( d(i,j)*D2_mu{i}*E{j}' +... db(i,j)*D1{j}*MU*D1{i}*E{j}' + ... D2_mu{j}*E{i}' ... ); end end obj.D = D; %=========================================% % Numerical traction operators for BC. % Because d1 =/= e0^T*D1, the numerical tractions are different % at every boundary. T_l = cell(dim,1); T_r = cell(dim,1); tau_l = cell(dim,1); tau_r = cell(dim,1); % tau^{j}_i = sum_k T^{j}_{ik} u_k d1_l = obj.d1_l; d1_r = obj.d1_r; e_l = obj.e_l; e_r = obj.e_r; D1 = obj.D1; % Loop over boundaries for j = 1:dim T_l{j} = cell(dim,dim); T_r{j} = cell(dim,dim); tau_l{j} = cell(dim,1); tau_r{j} = cell(dim,1); % Loop over components for i = 1:dim tau_l{j}{i} = sparse(m_tot,dim*m_tot); tau_r{j}{i} = sparse(m_tot,dim*m_tot); for k = 1:dim T_l{j}{i,k} = ... -d(i,j)*LAMBDA*(d(i,k)*e_l{k}*d1_l{k}' + db(i,k)*D1{k})... -d(j,k)*MU*(d(i,j)*e_l{i}*d1_l{i}' + db(i,j)*D1{i})... -d(i,k)*MU*e_l{j}*d1_l{j}'; T_r{j}{i,k} = ... d(i,j)*LAMBDA*(d(i,k)*e_r{k}*d1_r{k}' + db(i,k)*D1{k})... +d(j,k)*MU*(d(i,j)*e_r{i}*d1_r{i}' + db(i,j)*D1{i})... +d(i,k)*MU*e_r{j}*d1_r{j}'; tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}'; tau_r{j}{i} = tau_r{j}{i} + T_r{j}{i,k}*E{k}'; end end end obj.T_l = T_l; obj.T_r = T_r; obj.tau_l = tau_l; obj.tau_r = tau_r; % Kroneckered norms and coefficients I_dim = speye(dim); obj.RHOi_kron = kron(obj.RHOi, I_dim); obj.Hi_kron = kron(obj.Hi, I_dim); % Misc. obj.m = m; obj.h = h; obj.order = order; obj.grid = g; obj.dim = dim; end % Closure functions return the operators applied to the own domain to close the boundary % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a cell array of strings specifying the type of boundary condition for each component. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) default_arg('type',{'free','free'}); default_arg('parameter', []); % j is the coordinate direction of the boundary j = obj.get_boundary_number(boundary); [e, T, tau] = obj.get_boundary_operator({'e','T','tau'}, boundary); E = obj.E; Hi = obj.Hi; H_gamma = obj.H_boundary{j}; LAMBDA = obj.LAMBDA; MU = obj.MU; RHOi = obj.RHOi; dim = obj.dim; m_tot = obj.grid.N(); RHOi_kron = obj.RHOi_kron; Hi_kron = obj.Hi_kron; % Preallocate closure = sparse(dim*m_tot, dim*m_tot); penalty = cell(dim,1); for k = 1:dim penalty{k} = sparse(dim*m_tot, m_tot/obj.m(j)); end % Loop over components that we (potentially) have different BC on for k = 1:dim switch type{k} % Dirichlet boundary condition case {'D','d','dirichlet','Dirichlet'} tuning = 1.2; phi = obj.phi{j}; h = obj.h(j); h11 = obj.H11{j}*h; gamma = obj.gamma{j}; a_lambda = dim/h11 + 1/(h11*phi); a_mu_i = 2/(gamma*h); a_mu_ij = 2/h11 + 1/(h11*phi); d = @kroneckerDelta; % Kronecker delta db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta alpha = @(i,j) tuning*( d(i,j)* a_lambda*LAMBDA ... + d(i,j)* a_mu_i*MU ... + db(i,j)*a_mu_ij*MU ); % Loop over components that Dirichlet penalties end up on for i = 1:dim C = T{k,i}; A = -d(i,k)*alpha(i,j); B = A + C; closure = closure + E{i}*RHOi*Hi*B'*e*H_gamma*(e'*E{k}' ); penalty{k} = penalty{k} - E{i}*RHOi*Hi*B'*e*H_gamma; end % Free boundary condition case {'F','f','Free','free','traction','Traction','t','T'} closure = closure - E{k}*RHOi*Hi*e*H_gamma* (e'*tau{k} ); penalty{k} = penalty{k} + E{k}*RHOi*Hi*e*H_gamma; % Unknown boundary condition otherwise error('No such boundary condition: type = %s',type); end end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain tuning = 1.2; % tuning = 20.2; error('Interface not implemented'); end % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. function [j, nj] = get_boundary_number(obj, boundary) switch boundary case {'w','W','west','West', 'e', 'E', 'east', 'East'} j = 1; case {'s','S','south','South', 'n', 'N', 'north', 'North'} j = 2; otherwise error('No such boundary: boundary = %s',boundary); end switch boundary case {'w','W','west','West','s','S','south','South'} nj = -1; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} nj = 1; end end % Returns the boundary operator op for the boundary specified by the string boundary. % op: may be a cell array of strings function [varargout] = get_boundary_operator(obj, op, boundary) switch boundary case {'w','W','west','West', 'e', 'E', 'east', 'East'} j = 1; case {'s','S','south','South', 'n', 'N', 'north', 'North'} j = 2; otherwise error('No such boundary: boundary = %s',boundary); end if ~iscell(op) op = {op}; end for i = 1:length(op) switch op{i} case 'e' switch boundary case {'w','W','west','West','s','S','south','South'} varargout{i} = obj.e_l{j}; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} varargout{i} = obj.e_r{j}; end case 'd' switch boundary case {'w','W','west','West','s','S','south','South'} varargout{i} = obj.d1_l{j}; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} varargout{i} = obj.d1_r{j}; end case 'H' varargout{i} = obj.H_boundary{j}; case 'T' switch boundary case {'w','W','west','West','s','S','south','South'} varargout{i} = obj.T_l{j}; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} varargout{i} = obj.T_r{j}; end case 'tau' switch boundary case {'w','W','west','West','s','S','south','South'} varargout{i} = obj.tau_l{j}; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} varargout{i} = obj.tau_r{j}; end otherwise error(['No such operator: operator = ' op{i}]); end end end function N = size(obj) N = prod(obj.m); end end end