Mercurial > repos > public > sbplib
view +time/SBPInTimeScaled.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | e95a0f2f7a8d |
children | 47e86b5270ad |
line wrap: on
line source
classdef SBPInTimeScaled < time.Timestepper % The SBP in time method. % Implemented for A*v_t = B*v + f(t), v(0) = v0 % The resulting system of equations is % M*u_next= K*u_prev_end + f properties A,B f k % total time step. blockSize % number of points in each block N % Number of components order nodes Mtilde,Ktilde % System matrices L,U,p,q % LU factorization of M e_T scaling S, Sinv % Scaling matrices % Time state t vtilde n end methods function obj = SBPInTimeScaled(A, B, f, k, t0, v0, scaling, TYPE, order, blockSize) default_arg('TYPE','gauss'); default_arg('f',[]); if(strcmp(TYPE,'gauss')) default_arg('order',4) default_arg('blockSize',4) else default_arg('order', 8); default_arg('blockSize',time.SBPInTimeImplicitFormulation.smallestBlockSize(order,TYPE)); end obj.A = A; obj.B = B; obj.scaling = scaling; if ~isempty(f) obj.f = f; else obj.f = @(t)sparse(length(v0),1); end obj.k = k; obj.blockSize = blockSize; obj.N = length(v0); obj.n = 0; obj.t = t0; %==== Build the time discretization matrix =====% switch TYPE case 'equidistant' ops = sbp.D2Standard(blockSize,{0,obj.k},order); case 'optimal' ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order); case 'minimal' ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order,'minimal'); case 'gauss' ops = sbp.D1Gauss(blockSize,{0,obj.k}); end I = speye(size(A)); I_t = speye(blockSize,blockSize); D1 = kron(ops.D1, I); HI = kron(ops.HI, I); e_0 = kron(ops.e_l, I); e_T = kron(ops.e_r, I); obj.nodes = ops.x; % Convert to form M*w = K*v0 + f(t) tau = kron(I_t, A) * e_0; M = kron(I_t, A)*D1 + HI*tau*e_0' - kron(I_t, B); K = HI*tau; obj.S = kron(I_t, spdiag(scaling)); obj.Sinv = kron(I_t, spdiag(1./scaling)); obj.Mtilde = obj.Sinv*M*obj.S; obj.Ktilde = obj.Sinv*K*spdiag(scaling); obj.e_T = e_T; % LU factorization [obj.L,obj.U,obj.p,obj.q] = lu(obj.Mtilde, 'vector'); obj.vtilde = (1./obj.scaling).*v0; end function [v,t] = getV(obj) v = obj.scaling.*obj.vtilde; t = obj.t; end function obj = step(obj) forcing = zeros(obj.blockSize*obj.N,1); for i = 1:obj.blockSize forcing((1 + (i-1)*obj.N):(i*obj.N)) = obj.f(obj.t + obj.nodes(i)); end RHS = obj.Sinv*forcing + obj.Ktilde*obj.vtilde; y = obj.L\RHS(obj.p); z = obj.U\y; w = zeros(size(z)); w(obj.q) = z; obj.vtilde = obj.e_T'*w; obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end methods(Static) function N = smallestBlockSize(order,TYPE) default_arg('TYPE','gauss') switch TYPE case 'gauss' N = 4; end end end end