view +time/SBPInTimeImplicitFormulation.m @ 1031:2ef20d00b386 feature/advectionRV

For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:25:06 +0100
parents 5df7f99206b2
children 47e86b5270ad
line wrap: on
line source

classdef SBPInTimeImplicitFormulation < time.Timestepper
    % The SBP in time method.
    % Implemented for A*v_t = B*v + f(t), v(0) = v0
    properties
        A,B
        f

        k % total time step.

        blockSize % number of points in each block
        N % Number of components

        order
        nodes

        M,K     % System matrices
        L,U,p,q % LU factorization of M
        e_T

        % Time state
        t
        v
        n
    end

    methods
        function obj = SBPInTimeImplicitFormulation(A, B, f, k, t0, v0, TYPE, order, blockSize)

            default_arg('TYPE','gauss');
            default_arg('f',[]);

            if(strcmp(TYPE,'gauss'))
                default_arg('order',4)
                default_arg('blockSize',4)
            else
                default_arg('order', 8);
                default_arg('blockSize',time.SBPInTimeImplicitFormulation.smallestBlockSize(order,TYPE));
            end

            obj.A = A;
            obj.B = B;

            if ~isempty(f)
                obj.f = f;
            else
                obj.f = @(t)sparse(length(v0),1);
            end

            obj.k = k;
            obj.blockSize = blockSize;
            obj.N = length(v0);

            obj.n = 0;
            obj.t = t0;

            %==== Build the time discretization matrix =====%
            switch TYPE
                case 'equidistant'
                    ops = sbp.D2Standard(blockSize,{0,obj.k},order);
                case 'optimal'
                    ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order);
                case 'minimal'
                    ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order,'minimal');
                case 'gauss'
                    ops = sbp.D1Gauss(blockSize,{0,obj.k});
            end

            I = speye(size(A));
            I_t = speye(blockSize,blockSize);

            D1 = kron(ops.D1, I);
            HI = kron(ops.HI, I);
            e_0 = kron(ops.e_l, I);
            e_T = kron(ops.e_r, I);
            obj.nodes = ops.x;

            % Convert to form M*w = K*v0 + f(t)
            tau = kron(I_t, A) * e_0;
            M = kron(I_t, A)*D1 + HI*tau*e_0' - kron(I_t, B);

            K = HI*tau;

            obj.M = M;
            obj.K = K;
            obj.e_T = e_T;

            % LU factorization
            [obj.L,obj.U,obj.p,obj.q] = lu(obj.M, 'vector');

            obj.v = v0;
        end

        function [v,t] = getV(obj)
            v = obj.v;
            t = obj.t;
        end

        function obj = step(obj)
            RHS = zeros(obj.blockSize*obj.N,1);

            for i = 1:obj.blockSize
                RHS((1 + (i-1)*obj.N):(i*obj.N)) = obj.f(obj.t + obj.nodes(i));
            end

            RHS = RHS + obj.K*obj.v;

            y = obj.L\RHS(obj.p);
            z = obj.U\y;

            w = zeros(size(z));
            w(obj.q) = z;

            obj.v = obj.e_T'*w;

            obj.t = obj.t + obj.k;
            obj.n = obj.n + 1;
        end
    end

    methods(Static)
        function N = smallestBlockSize(order,TYPE)
            default_arg('TYPE','gauss')

            switch TYPE
                case 'gauss'
                    N = 4;
            end
        end
    end
end