Mercurial > repos > public > sbplib
view +time/SBPInTime.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | 38173ea263ed |
children | 8894e9c49e40 |
line wrap: on
line source
classdef SBPInTime < time.Timestepper % The SBP in time method. % Implemented for v_t = A*v + f(t) % % Each "step" takes one block step and thus advances % k = k_local*(blockSize-1) in time. properties M % System matrix L,U,P,Q % LU factorization of M A Et_r penalty f k_local % step size within a block k % Time size of a block k/(blockSize-1) = k_local t v m n blockSize % number of points in each block order nodes end methods function obj = SBPInTime(A, f, k, t0, v0, TYPE, order, blockSize) default_arg('TYPE','gauss'); if(strcmp(TYPE,'gauss')) default_arg('order',4) default_arg('blockSize',4) else default_arg('order', 8); default_arg('blockSize',time.SBPInTime.smallestBlockSize(order,TYPE)); end obj.A = A; obj.f = f; obj.k_local = k/(blockSize-1); obj.k = k; obj.blockSize = blockSize; obj.t = t0; obj.m = length(v0); obj.n = 0; %==== Build the time discretization matrix =====% switch TYPE case 'equidistant' ops = sbp.D2Standard(blockSize,{0,obj.k},order); case 'optimal' ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order); case 'minimal' ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order,'minimal'); case 'gauss' ops = sbp.D1Gauss(blockSize,{0,obj.k}); end D1 = ops.D1; HI = ops.HI; e_l = ops.e_l; e_r = ops.e_r; obj.nodes = ops.x; Ix = speye(size(A)); It = speye(blockSize,blockSize); obj.Et_r = kron(e_r,Ix); % Time derivative + penalty tau = 1; Mt = D1 + tau*HI*(e_l*e_l'); % penalty to impose "data" penalty = tau*HI*e_l; obj.penalty = kron(penalty,Ix); Mx = kron(It,A); Mt = kron(Mt,Ix); obj.M = Mt - Mx; %==============================================% % LU factorization [obj.L,obj.U,obj.P,obj.Q] = lu(obj.M); % Pretend that the initial condition is the last level % of a previous step. obj.v = 1/(e_r'*e_r) * obj.Et_r * v0; end function [v,t] = getV(obj) v = obj.Et_r' * obj.v; t = obj.t; end function obj = step(obj) obj.v = time.sbp.sbpintime(obj.v, obj.t, obj.nodes,... obj.penalty, obj.f, obj.blockSize,... obj.Et_r,... obj.L, obj.U, obj.P, obj.Q); obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end methods(Static) function N = smallestBlockSize(order,TYPE) default_arg('TYPE','gauss') switch TYPE case 'equidistant' switch order case 2 N = 2; case 4 N = 8; case 6 N = 12; case 8 N = 16; case 10 N = 20; case 12 N = 24; otherwise error('Operator does not exist'); end case 'optimal' switch order case 4 N = 8; case 6 N = 12; case 8 N = 16; case 10 N = 20; case 12 N = 24; otherwise error('Operator does not exist'); end case 'minimal' switch order case 4 N = 6; case 6 N = 10; case 8 N = 12; case 10 N = 16; case 12 N = 20; otherwise error('Operator does not exist'); end case 'gauss' N = 4; end end end end