view +time/Rungekutta4SecondOrder.m @ 1031:2ef20d00b386 feature/advectionRV

For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:25:06 +0100
parents c6fcee3fcf1b
children
line wrap: on
line source

classdef Rungekutta4SecondOrder < time.Timestepper
    properties
        F
        k
        t
        w
        m
        D
        E
        S
        M
        C
        n
    end


    methods
        % Solves u_tt = Du + Eu_t + S by
        % Rewriting on first order form:
        %   w_t = M*w + C(t)
        % where
        %   M = [
        %      0, I;
        %      D, E;
        %   ]
        % and
        %   C(t) = [
        %      0;
        %      S(t)
        %   ]
        % D, E, S can either all be constants or all be function handles,
        % They can also be omitted by setting them equal to the empty matrix.
        function obj = Rungekutta4SecondOrder(D, E, S, k, t0, v0, v0t)
            obj.D = D;
            obj.E = E;
            obj.S = S;
            obj.m = length(v0);
            obj.n = 0;


            if isa(D, 'function_handle') || isa(E, 'function_handle') || isa(S, 'function_handle')
                default_arg('D', @(t)sparse(obj.m, obj.m));
                default_arg('E', @(t)sparse(obj.m, obj.m));
                default_arg('S', @(t)sparse(obj.m, 1)    );

                if ~isa(D, 'function_handle')
                    D = @(t)D;
                end
                if ~isa(E, 'function_handle')
                    E = @(t)E;
                end
                if ~isa(S, 'function_handle')
                    S = @(t)S;
                end

                obj.k = k;
                obj.t = t0;
                obj.w = [v0; v0t];

                % Avoid matrix formulation because it is VERY slow
                obj.F = @(w,t)[
                    w(obj.m+1:end);
                    D(t)*w(1:obj.m) + E(t)*w(obj.m+1:end) + S(t);
                ];
            else

                default_arg('D', sparse(obj.m, obj.m));
                default_arg('E', sparse(obj.m, obj.m));
                default_arg('S', sparse(obj.m, 1)    );

                I = speye(obj.m);
                O = sparse(obj.m,obj.m);

                obj.M = [
                    O, I;
                    D, E;
                ];
                obj.C = [
                    zeros(obj.m,1);
                                 S;
                ];

                obj.k = k;
                obj.t = t0;
                obj.w = [v0; v0t];

                obj.F = @(w,t)(obj.M*w + obj.C);
            end
        end

        function [v,t] = getV(obj)
            v = obj.w(1:end/2);
            t = obj.t;
        end

        function [vt,t] = getVt(obj)
            vt = obj.w(end/2+1:end);
            t = obj.t;
        end

        function obj = step(obj)
            obj.w = time.rk.rungekutta_4(obj.w, obj.t, obj.k, obj.F);
            obj.t = obj.t + obj.k;
            obj.n = obj.n + 1;
        end
    end


    methods (Static)
        function k = getTimeStep(lambda)
            k = rk4.get_rk4_time_step(lambda);
        end
    end

end