Mercurial > repos > public > sbplib
view +time/Rungekutta.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | 4e5e53d6336c |
children |
line wrap: on
line source
classdef Rungekutta < time.Timestepper properties F % RHS of the ODE k % Time step t % Time point v % Solution vector n % Time level scheme % The scheme used for the time stepping, e.g rk4, rk6 etc. end methods % Timesteps v_t = F(v,t), using RK with specfied order from t = t0 with % timestep k and initial conditions v = v0 function obj = Rungekutta(F, k, t0, v0, order) default_arg('order',4); obj.F = F; obj.k = k; obj.t = t0; obj.v = v0; obj.n = 0; % TBD: Order 4 is also implemented in the butcher tableau, but the rungekutta_4.m implementation % might be slightly more efficient. Need to do some profiling before deciding whether or not to keep it. if (order == 4) obj.scheme = @time.rk.rungekutta_4; else % Extract the coefficients for the specified order % used for the RK updates from the Butcher tableua. [s,a,b,c] = time.rk.butcherTableau(order); coeffs = struct('s',s,'a',a,'b',b,'c',c); obj.scheme = @(v,t,dt,F) time.rk.rungekutta(v, t , dt, F, coeffs); end end function [v,t] = getV(obj) v = obj.v; t = obj.t; end function obj = step(obj) obj.v = obj.scheme(obj.v, obj.t, obj.k, obj.F); obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end end