view +time/Rk4SecondOrderNonlin.m @ 1031:2ef20d00b386 feature/advectionRV

For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:25:06 +0100
parents c6fcee3fcf1b
children
line wrap: on
line source

classdef Rk4SecondOrderNonlin < time.Timestepper
    properties
        F
        k
        t
        w
        m

        D
        E
        S

        n
    end


    methods
        function obj = Rk4SecondOrderNonlin(D, E, S, k, t0, v0, v0t)
            default_arg('S',0);
            default_arg('E',0);

            if isnumeric(S)
                S = @(v,t)S;
            end

            if isnumeric(E)
                E = @(v)E;
            end

            obj.k = k;
            obj.t = t0;
            obj.w = [v0; v0t];

            m = length(v0);
            function wt = F(w,t)
                v  = w(1:m);
                vt = w(m+1:end);

                % Def: w = [v; vt]
                wt(1:m,1) = vt;
                wt(m+1:2*m,1) = D(v)*v + E(v)*vt + S(v,t);

            end

            obj.F = @F;
            obj.D = D;
            obj.E = E;
            obj.S = S;
            obj.m = m;
            obj.n = 0;
        end

        function [v,t] = getV(obj)
            v = obj.w(1:end/2);
            t = obj.t;
        end

        function [vt,t] = getVt(obj)
            vt = obj.w(end/2+1:end);
            t = obj.t;
        end

        function obj = step(obj)
            obj.w = time.rk.rungekutta_4(obj.w, obj.t, obj.k, obj.F);
            obj.t = obj.t + obj.k;
            obj.n = obj.n + 1;
        end
    end


    methods (Static)
        function k = getTimeStep(lambda)
            k = rk4.get_rk4_time_step(lambda);
        end
    end

end