Mercurial > repos > public > sbplib
view +time/CdiffTimeDep.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | 151ab2b5a686 |
children | 8894e9c49e40 |
line wrap: on
line source
classdef CdiffTimeDep < time.Timestepper properties D E S k t v v_prev n end methods % Solves u_tt = Du + E(t)u_t + S(t) % D, E, S can either all be constants or all be function handles, % They can also be omitted by setting them equal to the empty matrix. % CdiffTimeDep(D, E, S, k, t0, n0, v, v_prev) function obj = CdiffTimeDep(D, E, S, k, t0, n0, v, v_prev) m = length(v); default_arg('E', @(t)sparse(m,m)); default_arg('S', @(t)sparse(m,1)); obj.D = D; obj.E = E; obj.S = S; obj.k = k; obj.t = t0; obj.n = n0; obj.v = v; obj.v_prev = v_prev; end function [v,t] = getV(obj) v = obj.v; t = obj.t; end function [vt,t] = getVt(obj) vt = (obj.v-obj.v_prev)/obj.k; % Could be improved using u_tt = f(u)) t = obj.t; end function obj = step(obj) [obj.v, obj.v_prev] = time.cdiff.cdiff(obj.v, obj.v_prev, obj.k, obj.D, obj.E(obj.t), obj.S(obj.t)); obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end end