Mercurial > repos > public > sbplib
view +time/CdiffImplicit.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | d5bce13ece23 |
children | d6ede7f5cbf9 |
line wrap: on
line source
classdef CdiffImplicit < time.Timestepper properties A, B, C, G AA, BB, CC k t v, v_prev n % LU factorization L,U,p,q end methods % Solves % A*u_tt + B*u + C*v_t = G(t) % u(t0) = f1 % u_t(t0) = f2 % starting at time t0 with timestep k function obj = CdiffImplicit(A, B, C, G, f1, f2, k, t0) default_arg('A', []); default_arg('C', []); default_arg('G', []); default_arg('f1', 0); default_arg('f2', 0); default_arg('t0', 0); m = size(B,1); if isempty(A) A = speye(m); end if isempty(C) C = sparse(m,m); end if isempty(G) G = @(t) sparse(m,1); end if isempty(f1) f1 = sparse(m,1); end if isempty(f2) f2 = sparse(m,1); end obj.A = A; obj.B = B; obj.C = C; obj.G = G; AA = 1/k^2*A + 1/2*B + 1/(2*k)*C; BB = -2/k^2*A; CC = 1/k^2*A + 1/2*B - 1/(2*k)*C; % AA*v_next + BB*v + CC*v_prev == G(t_n) obj.AA = AA; obj.BB = BB; obj.CC = CC; v_prev = f1; I = speye(m); % v = (1/k^2*A)\((1/k^2*A - 1/2*B)*f1 + (1/k*I - 1/2*C)*f2 + 1/2*G(0)); v = f1 + k*f2; if ~issparse(A) || ~issparse(B) || ~issparse(C) error('LU factorization with full pivoting only works for sparse matrices.') end [L,U,p,q] = lu(AA,'vector'); obj.L = L; obj.U = U; obj.p = p; obj.q = q; obj.k = k; obj.t = t0+k; obj.n = 1; obj.v = v; obj.v_prev = v_prev; end function [v,t] = getV(obj) v = obj.v; t = obj.t; end function [vt,t] = getVt(obj) % Calculate next time step to be able to do centered diff. v_next = zeros(size(obj.v)); b = obj.G(obj.t) - obj.BB*obj.v - obj.CC*obj.v_prev; y = obj.L\b(obj.p); z = obj.U\y; v_next(obj.q) = z; vt = (v_next-obj.v_prev)/(2*obj.k); t = obj.t; end function obj = step(obj) b = obj.G(obj.t) - obj.BB*obj.v - obj.CC*obj.v_prev; obj.v_prev = obj.v; % % Backslash % obj.v = obj.AA\b; % LU with column pivot y = obj.L\b(obj.p); z = obj.U\y; obj.v(obj.q) = z; % Update time obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end end %%% Derivation % syms A B C G % syms n k % syms f1 f2 % v = symfun(sym('v(n)'),n); % d = A/k^2 * (v(n+1) - 2*v(n) +v(n-1)) + B/2*(v(n+1)+v(n-1)) + C/(2*k)*(v(n+1) - v(n-1)) == G % ic1 = v(0) == f1 % ic2 = A/k*(v(1)-f1) + k/2*(B*f1 + C*f2 - G) - f2 == 0 % c = collect(d, [v(n) v(n-1) v(n+1)]) % (-(2*A)/k^2)*v(n) + (B/2 + A/k^2 - C/(2*k))*v(n - 1) + (B/2 + A/k^2 + C/(2*k))*v(n + 1) == G % syms AA BB CC % % AA = B/2 + A/k^2 + C/(2*k) % % BB = -(2*A)/k^2 % % CC = B/2 + A/k^2 - C/(2*k) % s = subs(c, [B/2 + A/k^2 + C/(2*k), -(2*A)/k^2, B/2 + A/k^2 - C/(2*k)], [AA, BB, CC]) % ic2_a = collect(ic2, [v(1) f1 f2]) % (A/k)*v(1) + ((B*k)/2 - A/k)*f1 + ((C*k)/2 - 1)*f2 - (G*k)/2 == 0