view +time/+rk/rk4_stability.m @ 1031:2ef20d00b386 feature/advectionRV

For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:25:06 +0100
parents c6fcee3fcf1b
children
line wrap: on
line source

function rk_stability()
    ruku4 = @(z)(abs(1 + z +(1/2)*z.^2 + (1/6)*z.^3 + (1/24)*z.^4));
    circ  = @(z)(abs(z));


    % contour(X,Y,z)
    ax = [-4 2 -3 3];
    % hold on
    fcontour(ruku4,[1,1],[-3, 0.6],[-3.2, 3.2])
    hold on
    r = 2.6;
    fcontour(circ,[r,r],[-3, 0.6],[-3.2, 3.2],'r')
    hold off
    % contour(X,Y,z,[1,1],'b')
    axis(ax)
    title('4th order Runge-Kutta stability region')
    xlabel('Re')
    ylabel('Im')
    axis equal
    grid on
    box on
    hold off
    % surf(X,Y,z)


    rk4roots()
end

function fcontour(f,levels,x_lim,y_lim,opt)
    default_arg('opt','b')
    x = linspace(x_lim(1),x_lim(2));
    y = linspace(y_lim(1),y_lim(2));
    [X,Y] = meshgrid(x,y);
    mu = X+ 1i*Y;

    z = f(mu);

    contour(X,Y,z,levels,opt)

end


function rk4roots()
    ruku4 = @(z)(abs(1 + z +(1/2)*z.^2 + (1/6)*z.^3 + (1/24)*z.^4));
    % Roots for real evalues:
    F = @(x)(abs(ruku4(x))-1);
    real_x = fzero(F,-3);

    % Roots for imaginary evalues:
    F = @(x)(abs(ruku4(1i*x))-1);
    imag_x1 = fzero(F,-3);
    imag_x2 = fzero(F,3);


    fprintf('Real x = %f\n',real_x)
    fprintf('Imag x = %f\n',imag_x1)
    fprintf('Imag x = %f\n',imag_x2)
end