Mercurial > repos > public > sbplib
view +scheme/Wave2d.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | 706d1c2b4199 |
children | 78db023a7fe3 c12b84fe9b00 |
line wrap: on
line source
classdef Wave2d < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing x,y % Grid X,Y % Values of x and y for each grid point order % Order accuracy for the approximation D % non-stabalized scheme operator M % Derivative norm alpha H % Discrete norm Hi H_x, H_y % Norms in the x and y directions Hx,Hy % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. Hi_x, Hi_y Hix, Hiy e_w, e_e, e_s, e_n d1_w, d1_e, d1_s, d1_n gamm_x, gamm_y end methods function obj = Wave2d(m,lim,order,alpha) default_arg('alpha',1); xlim = lim{1}; ylim = lim{2}; if length(m) == 1 m = [m m]; end m_x = m(1); m_y = m(2); [x, h_x] = util.get_grid(xlim{:},m_x); [y, h_y] = util.get_grid(ylim{:},m_y); ops_x = sbp.Ordinary(m_x,h_x,order); ops_y = sbp.Ordinary(m_y,h_y,order); I_x = speye(m_x); I_y = speye(m_y); D2_x = sparse(ops_x.derivatives.D2); H_x = sparse(ops_x.norms.H); Hi_x = sparse(ops_x.norms.HI); M_x = sparse(ops_x.norms.M); e_l_x = sparse(ops_x.boundary.e_1); e_r_x = sparse(ops_x.boundary.e_m); d1_l_x = sparse(ops_x.boundary.S_1); d1_r_x = sparse(ops_x.boundary.S_m); D2_y = sparse(ops_y.derivatives.D2); H_y = sparse(ops_y.norms.H); Hi_y = sparse(ops_y.norms.HI); M_y = sparse(ops_y.norms.M); e_l_y = sparse(ops_y.boundary.e_1); e_r_y = sparse(ops_y.boundary.e_m); d1_l_y = sparse(ops_y.boundary.S_1); d1_r_y = sparse(ops_y.boundary.S_m); D2 = kr(D2_x, I_y) + kr(I_x, D2_y); obj.H = kr(H_x,H_y); obj.Hx = kr(H_x,I_y); obj.Hy = kr(I_x,H_y); obj.Hix = kr(Hi_x,I_y); obj.Hiy = kr(I_x,Hi_y); obj.Hi = kr(Hi_x,Hi_y); obj.M = kr(M_x,H_y)+kr(H_x,M_y); obj.e_w = kr(e_l_x,I_y); obj.e_e = kr(e_r_x,I_y); obj.e_s = kr(I_x,e_l_y); obj.e_n = kr(I_x,e_r_y); obj.d1_w = kr(d1_l_x,I_y); obj.d1_e = kr(d1_r_x,I_y); obj.d1_s = kr(I_x,d1_l_y); obj.d1_n = kr(I_x,d1_r_y); obj.m = m; obj.h = [h_x h_y]; obj.order = order; obj.alpha = alpha; obj.D = alpha*D2; obj.x = x; obj.y = y; obj.X = kr(x,ones(m_y,1)); obj.Y = kr(ones(m_x,1),y); obj.gamm_x = h_x*ops_x.borrowing.M.S; obj.gamm_y = h_y*ops_y.borrowing.M.S; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type,data) default_arg('type','neumann'); default_arg('data',0); [e,d,s,gamm,halfnorm_inv] = obj.get_boundary_ops(boundary); switch type % Dirichlet boundary condition case {'D','d','dirichlet'} alpha = obj.alpha; % tau1 < -alpha^2/gamma tuning = 1.1; tau1 = -tuning*alpha/gamm; tau2 = s*alpha; p = tau1*e + tau2*d; closure = halfnorm_inv*p*e'; pp = halfnorm_inv*p; switch class(data) case 'double' penalty = pp*data; case 'function_handle' penalty = @(t)pp*data(t); otherwise error('Wierd data argument!') end % Neumann boundary condition case {'N','n','neumann'} alpha = obj.alpha; tau1 = -s*alpha; tau2 = 0; tau = tau1*e + tau2*d; closure = halfnorm_inv*tau*d'; pp = halfnorm_inv*tau; switch class(data) case 'double' penalty = pp*data; case 'function_handle' penalty = @(t)pp*data(t); otherwise error('Wierd data argument!') end % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u,d_u,s_u,gamm_u, halfnorm_inv] = obj.get_boundary_ops(boundary); [e_v,d_v,s_v,gamm_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); tuning = 1.1; alpha_u = obj.alpha; alpha_v = neighbour_scheme.alpha; % tau1 < -(alpha_u/gamm_u + alpha_v/gamm_v) tau1 = -(alpha_u/gamm_u + alpha_v/gamm_v) * tuning; tau2 = s_u*1/2*alpha_u; sig1 = s_u*(-1/2); sig2 = 0; tau = tau1*e_u + tau2*d_u; sig = sig1*e_u + sig2*d_u; closure = halfnorm_inv*( tau*e_u' + sig*alpha_u*d_u'); penalty = halfnorm_inv*(-tau*e_v' - sig*alpha_v*d_v'); end % Ruturns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary function [e,d,s,gamm, halfnorm_inv] = get_boundary_ops(obj,boundary) switch boundary case 'w' e = obj.e_w; d = obj.d1_w; s = -1; gamm = obj.gamm_x; halfnorm_inv = obj.Hix; case 'e' e = obj.e_e; d = obj.d1_e; s = 1; gamm = obj.gamm_x; halfnorm_inv = obj.Hix; case 's' e = obj.e_s; d = obj.d1_s; s = -1; gamm = obj.gamm_y; halfnorm_inv = obj.Hiy; case 'n' e = obj.e_n; d = obj.d1_n; s = 1; gamm = obj.gamm_y; halfnorm_inv = obj.Hiy; otherwise error('No such boundary: boundary = %s',boundary); end end function N = size(obj) N = prod(obj.m); end end methods(Static) % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u % and bound_v of scheme schm_v. % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); end end end