Mercurial > repos > public > sbplib
view +scheme/Utux.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | d6ab5ceba496 |
children | 8a9393084b30 |
line wrap: on
line source
classdef Utux < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing grid % Grid order % Order accuracy for the approximation a % Wave speed % Can either be a constant or function handle. H % Discrete norm D D1 Hi e_l e_r end methods function obj = Utux(g, order, opSet, a, fluxSplitting) default_arg('opSet',@sbp.D2Standard); default_arg('a',1); default_arg('fluxSplitting',[]); assertType(g, 'grid.Cartesian'); if isa(a, 'function_handle') obj.a = spdiag(grid.evalOn(g, a)); else obj.a = a; end m = g.size(); xl = g.getBoundary('l'); xr = g.getBoundary('r'); xlim = {xl, xr}; ops = opSet(m, xlim, order); if (isequal(opSet, @sbp.D1Upwind)) obj.D1 = (ops.Dp + ops.Dm)/2; DissOp = (ops.Dm - ops.Dp)/2; obj.D = -(obj.a*obj.D1 + fluxSplitting*DissOp); else obj.D1 = ops.D1; obj.D = -obj.a*obj.D1; end obj.grid = g; obj.H = ops.H; obj.Hi = ops.HI; obj.e_l = ops.e_l; obj.e_r = ops.e_r; obj.m = m; obj.h = ops.h; obj.order = order; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type) default_arg('type','dirichlet'); sigma_left = -1; % Scalar penalty parameter for left boundary sigma_right = 1; % Scalar penalty parameter for right boundary switch boundary % Can only specify boundary condition where there is inflow % Extract the postivie resp. negative part of a, for the left % resp. right boundary, and set other values of a to zero. % Then the closure will effectively only contribute to inflow boundaries case {'l','L','left','Left'} a_inflow = obj.a; a_inflow(a_inflow < 0) = 0; tau = sigma_left*a_inflow*obj.e_l; closure = obj.Hi*tau*obj.e_l'; case {'r','R','right','Right'} a_inflow = obj.a; a_inflow(a_inflow > 0) = 0; tau = sigma_right*a_inflow*obj.e_r; closure = obj.Hi*tau*obj.e_r'; end penalty = -obj.Hi*tau; end function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) switch boundary % Upwind coupling case {'l','left'} tau = -1*obj.a*obj.e_l; closure = obj.Hi*tau*obj.e_l'; penalty = -obj.Hi*tau*neighbour_scheme.e_r'; case {'r','right'} tau = 0*obj.a*obj.e_r; closure = obj.Hi*tau*obj.e_r'; penalty = -obj.Hi*tau*neighbour_scheme.e_l'; end end function N = size(obj) N = obj.m; end end methods(Static) % Calculates the matrices needed for the inteface coupling between boundary bound_u of scheme schm_u % and bound_v of scheme schm_v. % [uu, uv, vv, vu] = inteface_coupling(A,'r',B,'l') function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); end end end