view +scheme/Schrodinger.m @ 1031:2ef20d00b386 feature/advectionRV

For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:25:06 +0100
parents 706d1c2b4199
children 337c4d1dcef5 c12b84fe9b00
line wrap: on
line source

classdef Schrodinger < scheme.Scheme
    properties
        m % Number of points in each direction, possibly a vector
        h % Grid spacing
        x % Grid
        order % Order accuracy for the approximation

        D % non-stabalized scheme operator
        H % Discrete norm
        M % Derivative norm
        alpha

        D2
        Hi
        e_l
        e_r
        d1_l
        d1_r
        gamm
    end

    methods
        % Solving SE in the form u_t = i*u_xx -i*V;
        function obj = Schrodinger(m,xlim,order,V)
            default_arg('V',0);

            [x, h] = util.get_grid(xlim{:},m);

            ops = sbp.Ordinary(m,h,order);

            obj.D2 = sparse(ops.derivatives.D2);
            obj.H =  sparse(ops.norms.H);
            obj.Hi = sparse(ops.norms.HI);
            obj.M =  sparse(ops.norms.M);
            obj.e_l = sparse(ops.boundary.e_1);
            obj.e_r = sparse(ops.boundary.e_m);
            obj.d1_l = sparse(ops.boundary.S_1);
            obj.d1_r = sparse(ops.boundary.S_m);


            if isa(V,'function_handle')
                V_vec = V(x);
            else
                V_vec = x*0 + V;
            end

            V_mat = spdiags(V_vec,0,m,m);

            obj.D = 1i * obj.D2 - 1i * V_mat;

            obj.m = m;
            obj.h = h;
            obj.order = order;

            obj.x = x;
        end


        % Closure functions return the opertors applied to the own doamin to close the boundary
        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition if there are several.
        %       data                is a function returning the data that should be applied at the boundary.
        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
        %       neighbour_boundary  is a string specifying which boundary to interface to.
        function [closure, penalty] = boundary_condition(obj,boundary,type,data)
            default_arg('type','dirichlet');
            default_arg('data',0);

            [e,d,s] = obj.get_boundary_ops(boundary);

            switch type
                % Dirichlet boundary condition
                case {'D','d','dirichlet'}
                    tau = s * 1i*d;
                    closure = obj.Hi*tau*e';

                    switch class(data)
                        case 'double'
                            penalty = -obj.Hi*tau*data;
                        case 'function_handle'
                            penalty = @(t)-obj.Hi*tau*data(t);
                        otherwise
                            error('Wierd data argument!')
                    end

                % Unknown, boundary condition
                otherwise
                    error('No such boundary condition: type = %s',type);
            end
        end

        function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type)
            % u denotes the solution in the own domain
            % v denotes the solution in the neighbour domain
            [e_u,d_u,s_u] = obj.get_boundary_ops(boundary);
            [e_v,d_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary);

            a =  -s_u* 1/2 * 1i ;
            b =  a';

            tau = b*d_u;
            sig = -a*e_u;

            closure = obj.Hi * (tau*e_u' + sig*d_u');
            penalty = obj.Hi * (-tau*e_v' - sig*d_v');
        end

        % Ruturns the boundary ops and sign for the boundary specified by the string boundary.
        % The right boundary is considered the positive boundary
        function [e,d,s] = get_boundary_ops(obj,boundary)
            switch boundary
                case 'l'
                    e = obj.e_l;
                    d = obj.d1_l;
                    s = -1;
                case 'r'
                    e = obj.e_r;
                    d = obj.d1_r;
                    s = 1;
                otherwise
                    error('No such boundary: boundary = %s',boundary);
            end
        end

        function N = size(obj)
            N = obj.m;
        end

    end

    methods(Static)
        % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u
        % and bound_v of scheme schm_v.
        %   [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l')
        function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v)
            [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v);
            [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u);
        end
    end
end