view +scheme/Hypsyst3d.m @ 1031:2ef20d00b386 feature/advectionRV

For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:25:06 +0100
parents 706d1c2b4199
children 0652b34f9f27
line wrap: on
line source

classdef Hypsyst3d < scheme.Scheme
    properties
        m % Number of points in each direction, possibly a vector
        n % Size of system
        h % Grid spacing
        x, y, z % Grid
        X, Y, Z% Values of x and y for each grid point
        Yx, Zx, Xy, Zy, Xz, Yz %Grid values for boundary surfaces
        order % Order accuracy for the approximation

        D % non-stabalized scheme operator
        A, B, C, E % Symbolic coefficient matrices
        Aevaluated,Bevaluated,Cevaluated, Eevaluated

        H % Discrete norm
        Hx, Hy, Hz  % Norms in the x, y and z directions
        Hxi,Hyi, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
        I_x,I_y, I_z, I_N
        e_w, e_e, e_s, e_n, e_b, e_t
        params % Parameters for the coeficient matrice
    end


    methods
        % Solving Hyperbolic systems on the form u_t=-Au_x-Bu_y-Cu_z-Eu
        function obj = Hypsyst3d(m, lim, order, A, B,C, E, params,operator)
            default_arg('E', [])
            xlim =  lim{1};
            ylim = lim{2};
            zlim = lim{3};

            if length(m) == 1
                m = [m m m];
            end

            obj.A = A;
            obj.B = B;
            obj.C = C;
            obj.E = E;
            m_x = m(1);
            m_y = m(2);
            m_z = m(3);
            obj.params = params;

            switch operator
                case 'upwind'
                    ops_x = sbp.D1Upwind(m_x,xlim,order);
                    ops_y = sbp.D1Upwind(m_y,ylim,order);
                    ops_z = sbp.D1Upwind(m_z,zlim,order);
                otherwise
                    ops_x = sbp.D2Standard(m_x,xlim,order);
                    ops_y = sbp.D2Standard(m_y,ylim,order);
                    ops_z = sbp.D2Standard(m_z,zlim,order);
            end

            obj.x = ops_x.x;
            obj.y = ops_y.x;
            obj.z = ops_z.x;

            obj.X = kr(obj.x,ones(m_y,1),ones(m_z,1));
            obj.Y = kr(ones(m_x,1),obj.y,ones(m_z,1));
            obj.Z = kr(ones(m_x,1),ones(m_y,1),obj.z);

            obj.Yx = kr(obj.y,ones(m_z,1));
            obj.Zx = kr(ones(m_y,1),obj.z);
            obj.Xy = kr(obj.x,ones(m_z,1));
            obj.Zy = kr(ones(m_x,1),obj.z);
            obj.Xz = kr(obj.x,ones(m_y,1));
            obj.Yz = kr(ones(m_z,1),obj.y);

            obj.Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y,obj.Z);
            obj.Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y,obj.Z);
            obj.Cevaluated = obj.evaluateCoefficientMatrix(C, obj.X, obj.Y,obj.Z);
            obj.Eevaluated = obj.evaluateCoefficientMatrix(E, obj.X, obj.Y,obj.Z);

            obj.n = length(A(obj.params,0,0,0));

            I_n = speye(obj.n);
            I_x = speye(m_x);
            obj.I_x = I_x;
            I_y = speye(m_y);
            obj.I_y = I_y;
            I_z = speye(m_z);
            obj.I_z = I_z;
            I_N = kr(I_n,I_x,I_y,I_z);

            obj.Hxi = kr(I_n, ops_x.HI, I_y,I_z);
            obj.Hx = ops_x.H;
            obj.Hyi = kr(I_n, I_x, ops_y.HI,I_z);
            obj.Hy = ops_y.H;
            obj.Hzi = kr(I_n, I_x,I_y, ops_z.HI);
            obj.Hz = ops_z.H;

            obj.e_w = kr(I_n, ops_x.e_l, I_y,I_z);
            obj.e_e = kr(I_n, ops_x.e_r, I_y,I_z);
            obj.e_s = kr(I_n, I_x, ops_y.e_l,I_z);
            obj.e_n = kr(I_n, I_x, ops_y.e_r,I_z);
            obj.e_b = kr(I_n, I_x, I_y, ops_z.e_l);
            obj.e_t = kr(I_n, I_x, I_y, ops_z.e_r);

            obj.m = m;
            obj.h = [ops_x.h ops_y.h ops_x.h];
            obj.order = order;

            switch operator
                case 'upwind'
                    alphaA = max(abs(eig(A(params,obj.x(end),obj.y(end),obj.z(end)))));
                    alphaB = max(abs(eig(B(params,obj.x(end),obj.y(end),obj.z(end)))));
                    alphaC = max(abs(eig(C(params,obj.x(end),obj.y(end),obj.z(end)))));

                    Ap = (obj.Aevaluated+alphaA*I_N)/2;
                    Am = (obj.Aevaluated-alphaA*I_N)/2;
                    Dpx = kr(I_n, ops_x.Dp, I_y,I_z);
                    Dmx = kr(I_n, ops_x.Dm, I_y,I_z);
                    obj.D = -Am*Dpx;
                    temp = Ap*Dmx;
                    obj.D = obj.D-temp;
                    clear Ap Am Dpx Dmx

                    Bp = (obj.Bevaluated+alphaB*I_N)/2;
                    Bm = (obj.Bevaluated-alphaB*I_N)/2;
                    Dpy = kr(I_n, I_x, ops_y.Dp,I_z);
                    Dmy = kr(I_n, I_x, ops_y.Dm,I_z);
                    temp = Bm*Dpy;
                    obj.D = obj.D-temp;
                    temp = Bp*Dmy;
                    obj.D = obj.D-temp;
                    clear Bp Bm Dpy Dmy


                    Cp = (obj.Cevaluated+alphaC*I_N)/2;
                    Cm = (obj.Cevaluated-alphaC*I_N)/2;
                    Dpz = kr(I_n, I_x, I_y,ops_z.Dp);
                    Dmz = kr(I_n, I_x, I_y,ops_z.Dm);

                    temp = Cm*Dpz;
                    obj.D = obj.D-temp;
                    temp = Cp*Dmz;
                    obj.D = obj.D-temp;
                    clear Cp Cm Dpz Dmz
                    obj.D = obj.D-obj.Eevaluated;

                case 'standard'
                    D1_x = kr(I_n, ops_x.D1, I_y,I_z);
                    D1_y = kr(I_n, I_x, ops_y.D1,I_z);
                    D1_z = kr(I_n, I_x, I_y,ops_z.D1);
                    obj.D = -obj.Aevaluated*D1_x-obj.Bevaluated*D1_y-obj.Cevaluated*D1_z-obj.Eevaluated;
                otherwise
                    error('Opperator not supported');
            end
        end

        % Closure functions return the opertors applied to the own doamin to close the boundary
        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition if there are several.
        %       data                is a function returning the data that should be applied at the boundary.
        function [closure, penalty] = boundary_condition(obj,boundary,type,L)
            default_arg('type','char');
            BM = boundary_matrices(obj,boundary);
            switch type
                case{'c','char'}
                    [closure,penalty] = boundary_condition_char(obj,BM);
                case{'general'}
                    [closure,penalty] = boundary_condition_general(obj,BM,boundary,L);
                otherwise
                    error('No such boundary condition')
            end
        end

        function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type)
            error('Not implemented');
        end

        function N = size(obj)
            N = obj.m;
        end

        function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y, Z)
            params = obj.params;
            side = max(length(X),length(Y));
            if isa(mat,'function_handle')
                [rows,cols] = size(mat(params,0,0,0));
                matVec = mat(params,X',Y',Z');
                matVec = sparse(matVec);
            else
                matVec = mat;
                [rows,cols] = size(matVec);
                side = max(length(X),length(Y));
                cols = cols/side;
            end

            ret = cell(rows,cols);
            for ii = 1:rows
                for jj = 1:cols
                    ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side));
                end
            end
            ret = cell2mat(ret);
        end

        function [BM] = boundary_matrices(obj,boundary)
            params = obj.params;

            switch boundary
                case {'w','W','west'}
                    BM.e_ = obj.e_w;
                    mat = obj.A;
                    BM.boundpos = 'l';
                    BM.Hi = obj.Hxi;
                    [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.X(1),obj.Yx,obj.Zx);
                    BM.side = length(obj.Yx);
                case {'e','E','east'}
                    BM.e_ = obj.e_e;
                    mat = obj.A;
                    BM.boundpos = 'r';
                    BM.Hi = obj.Hxi;
                    [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.X(end),obj.Yx,obj.Zx);
                    BM.side = length(obj.Yx);
                case {'s','S','south'}
                    BM.e_ = obj.e_s;
                    mat = obj.B;
                    BM.boundpos = 'l';
                    BM.Hi = obj.Hyi;
                    [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.Xy,obj.Y(1),obj.Zy);
                    BM.side = length(obj.Xy);
                case {'n','N','north'}
                    BM.e_ = obj.e_n;
                    mat = obj.B;
                    BM.boundpos = 'r';
                    BM.Hi = obj.Hyi;
                    [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.Xy,obj.Y(end),obj.Zy);
                    BM.side = length(obj.Xy);
                case{'b','B','Bottom'}
                    BM.e_ = obj.e_b;
                    mat = obj.C;
                    BM.boundpos = 'l';
                    BM.Hi = obj.Hzi;
                    [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.Xz,obj.Yz,obj.Z(1));
                    BM.side = length(obj.Xz);
                case{'t','T','Top'}
                    BM.e_ = obj.e_t;
                    mat = obj.C;
                    BM.boundpos = 'r';
                    BM.Hi = obj.Hzi;
                    [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.Xz,obj.Yz,obj.Z(end));
                    BM.side = length(obj.Xz);
            end
            BM.pos = signVec(1); BM.zeroval=signVec(2); BM.neg=signVec(3);
        end

        % Characteristic bouyndary consitions
        function [closure, penalty]=boundary_condition_char(obj,BM)
            side = BM.side;
            pos = BM.pos;
            neg = BM.neg;
            zeroval=BM.zeroval;
            V = BM.V;
            Vi = BM.Vi;
            Hi = BM.Hi;
            D = BM.D;
            e_ = BM.e_;

            switch BM.boundpos
                case {'l'}
                    tau = sparse(obj.n*side,pos);
                    Vi_plus = Vi(1:pos,:);
                    tau(1:pos,:) = -abs(D(1:pos,1:pos));
                    closure = Hi*e_*V*tau*Vi_plus*e_';
                    penalty = -Hi*e_*V*tau*Vi_plus;
                case {'r'}
                    tau = sparse(obj.n*side,neg);
                    tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
                    Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:);
                    closure = Hi*e_*V*tau*Vi_minus*e_';
                    penalty = -Hi*e_*V*tau*Vi_minus;
            end
        end

        % General boundary condition in the form Lu=g(x)
        function [closure,penalty] = boundary_condition_general(obj,BM,boundary,L)
            side = BM.side;
            pos = BM.pos;
            neg = BM.neg;
            zeroval=BM.zeroval;
            V = BM.V;
            Vi = BM.Vi;
            Hi = BM.Hi;
            D = BM.D;
            e_ = BM.e_;

            switch boundary
                case {'w','W','west'}
                    L = obj.evaluateCoefficientMatrix(L,obj.x(1),obj.Yx,obj.Zx);
                case {'e','E','east'}
                    L = obj.evaluateCoefficientMatrix(L,obj.x(end),obj.Yx,obj.Zx);
                case {'s','S','south'}
                    L = obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(1),obj.Zy);
                case {'n','N','north'}
                    L = obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(end),obj.Zy);% General boundary condition in the form Lu=g(x)
                case {'b','B','bottom'}
                    L = obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(1));
                case {'t','T','top'}
                    L = obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(end));
            end

            switch BM.boundpos
                case {'l'}
                    tau = sparse(obj.n*side,pos);
                    Vi_plus = Vi(1:pos,:);
                    Vi_minus = Vi(pos+zeroval+1:obj.n*side,:);
                    V_plus = V(:,1:pos);
                    V_minus = V(:,(pos+zeroval)+1:obj.n*side);

                    tau(1:pos,:) = -abs(D(1:pos,1:pos));
                    R = -inv(L*V_plus)*(L*V_minus);
                    closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_';
                    penalty = -Hi*e_*V*tau*inv(L*V_plus)*L;
                case {'r'}
                    tau = sparse(obj.n*side,neg);
                    tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
                    Vi_plus = Vi(1:pos,:);
                    Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:);

                    V_plus = V(:,1:pos);
                    V_minus = V(:,(pos+zeroval)+1:obj.n*side);
                    R = -inv(L*V_minus)*(L*V_plus);
                    closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_';
                    penalty = -Hi*e_*V*tau*inv(L*V_minus)*L;
            end
        end

        % Function that diagonalizes a symbolic matrix A as A=V*D*Vi
        % D         is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign
        %                                    [d+       ]
        %                               D =  [   d0    ]
        %                                    [       d-]
        % signVec   is a vector specifying the number of possitive, zero and negative eigenvalues of D
        function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y,z)
            params = obj.params;
            syms xs ys zs
            [V, D] = eig(mat(params,xs,ys,zs));
            Vi=inv(V);
            xs = x;
            ys = y;
            zs = z;


            side = max(length(x),length(y));
            Dret = zeros(obj.n,side*obj.n);
            Vret = zeros(obj.n,side*obj.n);
            Viret= zeros(obj.n,side*obj.n);

            for ii=1:obj.n
                for jj=1:obj.n
                    Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii));
                    Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii));
                    Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii));
                end
            end

            D = sparse(Dret);
            V = sparse(Vret);
            Vi = sparse(Viret);
            V = obj.evaluateCoefficientMatrix(V,x,y,z);
            Vi= obj.evaluateCoefficientMatrix(Vi,x,y,z);
            D = obj.evaluateCoefficientMatrix(D,x,y,z);
            DD = diag(D);

            poseig = (DD>0);
            zeroeig = (DD==0);
            negeig = (DD<0);

            D = diag([DD(poseig); DD(zeroeig); DD(negeig)]);
            V = [V(:,poseig) V(:,zeroeig) V(:,negeig)];
            Vi= [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)];
            signVec = [sum(poseig),sum(zeroeig),sum(negeig)];
        end
    end
end