Mercurial > repos > public > sbplib
view +scheme/Heat2dVariable.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | 21394c78c72e |
children | 78db023a7fe3 |
line wrap: on
line source
classdef Heat2dVariable < scheme.Scheme % Discretizes the Laplacian with variable coefficent, % In the Heat equation way (i.e., the discretization matrix is not necessarily % symmetric) % u_t = div * (kappa * grad u ) % opSet should be cell array of opSets, one per dimension. This % is useful if we have periodic BC in one direction. properties m % Number of points in each direction, possibly a vector h % Grid spacing grid dim order % Order of accuracy for the approximation % Diagonal matrix for variable coefficients KAPPA % Variable coefficient D % Total operator D1 % First derivatives % Second derivatives D2_kappa H, Hi % Inner products e_l, e_r d1_l, d1_r % Normal derivatives at the boundary alpha % Vector of borrowing constants H_boundary % Boundary inner products end methods function obj = Heat2dVariable(g ,order, kappa_fun, opSet) default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable}); default_arg('kappa_fun', @(x,y) 0*x+1); dim = 2; assert(isa(g, 'grid.Cartesian')) kappa = grid.evalOn(g, kappa_fun); m = g.size(); m_tot = g.N(); h = g.scaling(); lim = g.lim; % 1D operators ops = cell(dim,1); for i = 1:dim ops{i} = opSet{i}(m(i), lim{i}, order); end I = cell(dim,1); D1 = cell(dim,1); D2 = cell(dim,1); H = cell(dim,1); Hi = cell(dim,1); e_l = cell(dim,1); e_r = cell(dim,1); d1_l = cell(dim,1); d1_r = cell(dim,1); for i = 1:dim I{i} = speye(m(i)); D1{i} = ops{i}.D1; D2{i} = ops{i}.D2; H{i} = ops{i}.H; Hi{i} = ops{i}.HI; e_l{i} = ops{i}.e_l; e_r{i} = ops{i}.e_r; d1_l{i} = ops{i}.d1_l; d1_r{i} = ops{i}.d1_r; end %====== Assemble full operators ======== KAPPA = spdiag(kappa); obj.KAPPA = KAPPA; obj.D1 = cell(dim,1); obj.D2_kappa = cell(dim,1); obj.e_l = cell(dim,1); obj.e_r = cell(dim,1); obj.d1_l = cell(dim,1); obj.d1_r = cell(dim,1); % D1 obj.D1{1} = kron(D1{1},I{2}); obj.D1{2} = kron(I{1},D1{2}); % Boundary operators obj.e_l{1} = kron(e_l{1},I{2}); obj.e_l{2} = kron(I{1},e_l{2}); obj.e_r{1} = kron(e_r{1},I{2}); obj.e_r{2} = kron(I{1},e_r{2}); obj.d1_l{1} = kron(d1_l{1},I{2}); obj.d1_l{2} = kron(I{1},d1_l{2}); obj.d1_r{1} = kron(d1_r{1},I{2}); obj.d1_r{2} = kron(I{1},d1_r{2}); % D2 for i = 1:dim obj.D2_kappa{i} = sparse(m_tot); end ind = grid.funcToMatrix(g, 1:m_tot); for i = 1:m(2) D_kappa = D2{1}(kappa(ind(:,i))); p = ind(:,i); obj.D2_kappa{1}(p,p) = D_kappa; end for i = 1:m(1) D_kappa = D2{2}(kappa(ind(i,:))); p = ind(i,:); obj.D2_kappa{2}(p,p) = D_kappa; end % Quadratures obj.H = kron(H{1},H{2}); obj.Hi = inv(obj.H); obj.H_boundary = cell(dim,1); obj.H_boundary{1} = H{2}; obj.H_boundary{2} = H{1}; % Differentiation matrix D (without SAT) D2_kappa = obj.D2_kappa; D1 = obj.D1; D = sparse(m_tot,m_tot); for i = 1:dim D = D + D2_kappa{i}; end obj.D = D; %=========================================% % Misc. obj.m = m; obj.h = h; obj.order = order; obj.grid = g; obj.dim = dim; obj.alpha = [ops{1}.borrowing.M.d1, ops{2}.borrowing.M.d1]; end % Closure functions return the operators applied to the own domain to close the boundary % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj, boundary, type, symmetric, tuning) default_arg('type','Neumann'); default_arg('symmetric', false); default_arg('tuning',1.2); % j is the coordinate direction of the boundary % nj: outward unit normal component. % nj = -1 for west, south, bottom boundaries % nj = 1 for east, north, top boundaries [j, nj] = obj.get_boundary_number(boundary); switch nj case 1 e = obj.e_r; d = obj.d1_r; case -1 e = obj.e_l; d = obj.d1_l; end Hi = obj.Hi; H_gamma = obj.H_boundary{j}; KAPPA = obj.KAPPA; kappa_gamma = e{j}'*KAPPA*e{j}; h = obj.h(j); alpha = h*obj.alpha(j); switch type % Dirichlet boundary condition case {'D','d','dirichlet','Dirichlet'} if ~symmetric closure = -nj*Hi*d{j}*kappa_gamma*H_gamma*(e{j}' ); penalty = nj*Hi*d{j}*kappa_gamma*H_gamma; else closure = nj*Hi*d{j}*kappa_gamma*H_gamma*(e{j}' )... -tuning*2/alpha*Hi*e{j}*kappa_gamma*H_gamma*(e{j}' ) ; penalty = -nj*Hi*d{j}*kappa_gamma*H_gamma ... +tuning*2/alpha*Hi*e{j}*kappa_gamma*H_gamma; end % Free boundary condition case {'N','n','neumann','Neumann'} closure = -nj*Hi*e{j}*kappa_gamma*H_gamma*(d{j}' ); penalty = Hi*e{j}*kappa_gamma*H_gamma; % penalty is for normal derivative and not for derivative, hence the sign. % Unknown boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain error('Interface not implemented'); end % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. function [j, nj] = get_boundary_number(obj, boundary) switch boundary case {'w','W','west','West', 'e', 'E', 'east', 'East'} j = 1; case {'s','S','south','South', 'n', 'N', 'north', 'North'} j = 2; otherwise error('No such boundary: boundary = %s',boundary); end switch boundary case {'w','W','west','West','s','S','south','South'} nj = -1; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} nj = 1; end end % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. function [return_op] = get_boundary_operator(obj, op, boundary) switch boundary case {'w','W','west','West', 'e', 'E', 'east', 'East'} j = 1; case {'s','S','south','South', 'n', 'N', 'north', 'North'} j = 2; otherwise error('No such boundary: boundary = %s',boundary); end switch op case 'e' switch boundary case {'w','W','west','West','s','S','south','South'} return_op = obj.e_l{j}; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} return_op = obj.e_r{j}; end case 'd' switch boundary case {'w','W','west','West','s','S','south','South'} return_op = obj.d1_l{j}; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} return_op = obj.d1_r{j}; end otherwise error(['No such operator: operatr = ' op]); end end function N = size(obj) N = prod(obj.m); end end end