Mercurial > repos > public > sbplib
view +scheme/Burgers2D.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | a6f34de60044 |
children |
line wrap: on
line source
classdef Burgers2D < scheme.Scheme properties grid % Physical grid order % Order accuracy for the approximation D % Non-stabilized scheme operator H % Discrete norm H_inv % Norm inverse halfnorm_inv % Cell array halfnorm operators e_l % Cell array of left boundary operators e_r % Cell array of right boundary operators d_l % Cell array of left boundary derivative operators d_r % Cell array of right boundary derivative operators end methods function obj = Burgers2D(g, operator_type, order, dissipation) if ~isa(g, 'grid.Cartesian') || g.D() ~= 2 error('Grid must be 2d cartesian'); end obj.grid = g; obj.order = order; % Create cell array of 1D operators. For example D1_1d{1} = D1_x, D1_1d{2} = D1_y. [Dp_1d, Dm_1d, H_1d, H_inv_1d, d_l_1d, d_r_1d, e_l_1d, e_r_1d, I, DissipationOp_1d] = ... obj.assemble1DOperators(g, operator_type, order, dissipation); %% 2D-operators % D1 D1_1d{1} = (Dp_1d{1} + Dp_1d{1})/2; D1_1d{2} = (Dp_1d{2} + Dp_1d{2})/2; D1_2d = obj.extendOperatorTo2D(D1_1d, I); D1 = D1_2d{1} + D1_2d{2}; % D2 Dp_2d = obj.extendOperatorTo2D(Dp_1d, I); Dm_2d = obj.extendOperatorTo2D(Dm_1d, I); D2 = @(viscosity) Dm_2d{1}*spdiag(viscosity)*Dp_2d{1} + Dm_2d{2}*spdiag(viscosity)*Dp_2d{2}; % m = g.size(); % ind = grid.funcToMatrix(g, 1:g.N()); % for i = 1:g.D() % D2_2d{i} = sparse(zeros(g.N())); % end % % x-direction % for i = 1:m(2) % p = ind(:,i); % D2_2d{1}(p,p) = @(viscosity) D2_1d{1}(viscosity(p)); % end % % y-direction % for i = 1:m(1) % p = ind(i,:); % D2_2d{2}(p,p) = @(viscosity) D2_1d{2}(viscosity(p)); % end % D2 = D2_2d{1} + D2_2d{2}; obj.d_l = obj.extendOperatorTo2D(d_l_1d, I); obj.d_r = obj.extendOperatorTo2D(d_r_1d, I); obj.e_l = obj.extendOperatorTo2D(e_l_1d, I); obj.e_r = obj.extendOperatorTo2D(e_r_1d, I); obj.H = kron(H_1d{1},H_1d{2}); obj.H_inv = kron(H_inv_1d{1},H_inv_1d{2}); obj.halfnorm_inv = obj.extendOperatorTo2D(H_inv_1d, I); % Dissipation operator switch dissipation case 'on' DissOp_2d = obj.extendOperatorTo2D(DissipationOp_1d, I); DissOp = DissOp_2d{1} + DissOp_2d{2}; obj.D = @(v, viscosity) -1/2*D1*v.^2 + (D2(viscosity) + max(abs(v))*DissOp)*v; case 'off' obj.D = @(v, viscosity) -1/2*D1*v.^2 + D2(viscosity)*v; end end % Closure functions return the operators applied to the own doamin to close the boundary % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other domain. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. function [closure, penalty] = boundary_condition(obj,boundary,type,data) default_arg('type','robin'); default_arg('data',0); [e, d, halfnorm_inv, i_b, s] = obj.get_boundary_ops(boundary); switch type % Stable robin-like boundary conditions ((u+-abs(u))*u/3 - eps*u_x)) with +- at left/right boundary case {'R','robin'} p = s*halfnorm_inv*e; closure = @(v, viscosity) p*(((v(i_b)-s*abs(v(i_b)))/3).*(v(i_b)) - ((viscosity(i_b)).*d*v)); switch class(data) case 'double' penalty = s*p*data; case 'function_handle' penalty = @(t) s*p*data(t); otherwise error('Wierd data argument!') end otherwise error('No such boundary condition: type = %s',type); end end % Ruturns the boundary ops, half-norm, boundary indices and sign for the boundary specified by the string boundary. % The right boundary for each coordinate direction is considered the positive boundary function [e, d, halfnorm_inv, ind_boundary, s] = get_boundary_ops(obj,boundary) ind = grid.funcToMatrix(obj.grid, 1:obj.grid.N()); switch boundary case 'w' e = obj.e_l{1}; d = obj.d_l{1}; halfnorm_inv = obj.halfnorm_inv{1}; ind_boundary = ind(1,:); s = -1; case 'e' e = obj.e_r{1}; d = obj.d_r{1}; halfnorm_inv = obj.halfnorm_inv{1}; ind_boundary = ind(end,:); s = 1; case 's' e = obj.e_l{2}; d = obj.d_l{2}; halfnorm_inv = obj.halfnorm_inv{2}; ind_boundary = ind(:,1); s = -1; case 'n' e = obj.e_r{2}; d = obj.d_r{2}; halfnorm_inv = obj.halfnorm_inv{2}; ind_boundary = ind(:,end); s = 1; otherwise error('No such boundary: boundary = %s',boundary); end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) error('An interface function does not exist yet'); end function N = size(obj) N = obj.grid.m; end end methods(Static) function [Dp, Dm, H, Hi, d_l, d_r, e_l, e_r, I, DissipationOp] = assemble1DOperators(g, operator_type, order, dissipation) dim = g.D(); I = cell(dim,1); D1 = cell(dim,1); D2 = cell(dim,1); H = cell(dim,1); Hi = cell(dim,1); e_l = cell(dim,1); e_r = cell(dim,1); d1_l = cell(dim,1); d1_r = cell(dim,1); DissipationOp = cell(dim,1); for i = 1:dim switch operator_type % case 'narrow' % ops = sbp.D4Variable(g.m(i), g.lim{i}, order); % D1{i} = ops.D1; % D2{i} = ops.D2; % d_l{i} = ops.d1_l'; % d_r{i} = ops.d1_r'; % if (strcmp(dissipation,'on')) % DissipationOp{i} = -1*sbp.dissipationOperator(g.m(i), order, ops.HI); % end % case 'upwind-' % ops = sbp.D1Upwind(g.m(i), g.lim{i}, order); % D1{i} = (ops.Dp + ops.Dm)/2; % D2{i} = @(viscosity) ops.Dp*spdiag(viscosity)*ops.Dm; % d_l{i} = ops.e_l'*ops.Dm; % d_r{i} = ops.e_r'*ops.Dm; % if (strcmp(dissipation,'on')) % DissipationOp{i} = (ops.Dp-ops.Dm)/2; % end case 'upwind+' ops = sbp.D1Upwind(g.m(i), g.lim{i}, order); Dp{i} = ops.Dp; Dm{i} = ops.Dm; % D1{i} = (ops.Dp + ops.Dm)/2; % D2{i} = @(viscosity) ops.Dm*spdiag(viscosity)*ops.Dp; d_l{i} = ops.e_l'*ops.Dp; d_r{i} = ops.e_r'*ops.Dp; if (strcmp(dissipation,'on')) DissipationOp{i} = (ops.Dp-ops.Dm)/2; end % case 'upwind+-' % ops = sbp.D1Upwind(g.m(i), g.lim{i}, order); % D1{i} = (ops.Dp + ops.Dm)/2; % D2{i} = @(viscosity) (ops.Dp*spdiag(viscosity)*ops.Dm + ops.Dm*spdiag(viscosity)*ops.Dp)/2; % d_l{i} = ops.e_l'*D1; % d_r{i} = ops.e_r'*D1; % if (strcmp(dissipation,'on')) % DissipationOp{i} = (ops.Dp-ops.Dm)/2; % end otherwise error('Other operator types not yet supported', operator_type); end H{i} = ops.H; Hi{i} = ops.HI; e_l{i} = ops.e_l; e_r{i} = ops.e_r; I{i} = speye(g.m(i)); end end function op_2d = extendOperatorTo2D(op, I) op_2d{1} = kr(op{1}, I{2}); op_2d{2} = kr(I{1}, op{2}); end end end