Mercurial > repos > public > sbplib
view +scheme/Burgers1D.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | cda996e64925 |
children |
line wrap: on
line source
classdef Burgers1D < scheme.Scheme properties grid % Physical grid order % Order accuracy for the approximation params D % Non-stabalized scheme operator H % Discrete norm Hi % Norm inverse e_l e_r d_l d_r end methods function obj = Burgers1D(grid, pde_form, operator_type, order, dissipation, params) assert(grid.D == 1); assert(grid.size() == length(params.eps)); m = grid.size(); lim = grid.lim{1}; % Ugly, and only applicable for cartesian grids. switch operator_type case 'narrow' ops = sbp.D4Variable(m, lim, order); D1 = ops.D1; D2 = ops.D2; if (strcmp(dissipation,'on')) DissipationOp = -1*sbp.dissipationOperator(m, order, ops.HI); end d_l = ops.d1_l'; d_r = ops.d1_r'; case 'upwind-' ops = sbp.D1Upwind(m, lim, order); D1 = (ops.Dp + ops.Dm)/2; D2 = @(eps) ops.Dp*spdiag(eps)*ops.Dm; if (strcmp(dissipation,'on')) DissipationOp = (ops.Dp-ops.Dm)/2; end d_l = ops.e_l'*ops.Dm; d_r = ops.e_r'*ops.Dm; case 'upwind+' ops = sbp.D1Upwind(m, lim, order); D1 = (ops.Dp + ops.Dm)/2; D2 = @(eps) ops.Dm*spdiag(eps)*ops.Dp; if (strcmp(dissipation,'on')) DissipationOp = (ops.Dp-ops.Dm)/2; end d_l = ops.e_l'*ops.Dp; d_r = ops.e_r'*ops.Dp; case 'upwind+-' ops = sbp.D1Upwind(m, lim, order); D1 = (ops.Dp + ops.Dm)/2; D2 = @(eps) (ops.Dp*spdiag(eps)*ops.Dm + ops.Dm*spdiag(eps)*ops.Dp)/2; if (strcmp(dissipation,'on')) DissipationOp = (ops.Dp-ops.Dm)/2; end d_l = ops.e_l'*D1; d_r = ops.e_r'*D1; otherwise error('Other operator types not yet supported', operator_type); end switch pde_form case 'skew-symmetric' if (strcmp(dissipation,'on')) D = @(v, viscosity) - 1/3*D1*v.^2 + (-1/3*v.*D1 + D2(params.eps + viscosity) + max(abs(v))*DissipationOp)*v; else D = @(v, viscosity) - 1/3*D1*v.^2 + (-1/3*v.*D1 + D2(params.eps + viscosity))*v; end case 'conservative' if (strcmp(dissipation,'on')) D = @(v, viscosity) -1/2*D1*v.^2 + (D2(params.eps + viscosity) + max(abs(v))*DissipationOp)*v; else D = @(v, viscosity) -1/2*D1*v.^2 + D2(params.eps + viscosity)*v; end otherwise error('Not supported', pde_form); end obj.grid = grid; obj.order = order; obj.params = params; obj.D = D; obj.H = ops.H; obj.Hi = ops.HI; obj.e_l = ops.e_l; obj.e_r = ops.e_r; obj.d_l = d_l; obj.d_r = d_r; end % Closure functions return the operators applied to the own doamin to close the boundary % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other domain. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. function [closure, penalty] = boundary_condition(obj,boundary,type,data) default_arg('type','robin'); default_arg('data',0); [e, d, i_b, s] = obj.get_boundary_ops(boundary); switch type % Stable robin-like boundary conditions ((u+-abs(u))*u/3 - eps*u_x)) with +- at left/right boundary case {'R','robin'} p = s*obj.Hi*e; closure = @(v, viscosity) p*(((v(i_b)-s*abs(v(i_b)))/3)*(v(i_b)) - ((obj.params.eps(i_b) + viscosity(i_b))*d*v)); switch class(data) case 'double' penalty = s*p*data; case 'function_handle' penalty = @(t) s*p*data(t); otherwise error('Wierd data argument!') end otherwise error('No such boundary condition: type = %s',type); end end % Ruturns the boundary ops, boundary index and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary function [e, d, i_b, s] = get_boundary_ops(obj,boundary) switch boundary case 'l' e = obj.e_l; d = obj.d_l; i_b = 1; s = -1; case 'r' e = obj.e_r; d = obj.d_r; i_b = length(e); s = 1; otherwise error('No such boundary: boundary = %s',boundary); end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) error('An interface function does not exist yet'); end function N = size(obj) N = obj.grid.m; end end end