view +scheme/Beam2d.m @ 1031:2ef20d00b386 feature/advectionRV

For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:25:06 +0100
parents a35ed1d124d3
children 78db023a7fe3
line wrap: on
line source

classdef Beam2d < scheme.Scheme
    properties
        grid
        order % Order accuracy for the approximation

        D % non-stabalized scheme operator
        M % Derivative norm
        alpha

        H % Discrete norm
        Hi
        H_x, H_y % Norms in the x and y directions
        Hx,Hy % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
        Hi_x, Hi_y
        Hix, Hiy
        e_w, e_e, e_s, e_n
        d1_w, d1_e, d1_s, d1_n
        d2_w, d2_e, d2_s, d2_n
        d3_w, d3_e, d3_s, d3_n
        gamm_x, gamm_y
        delt_x, delt_y
    end

    methods
        function obj = Beam2d(m,lim,order,alpha,opsGen)
            default_arg('alpha',1);
            default_arg('opsGen',@sbp.Higher);

            if ~isa(grid, 'grid.Cartesian') || grid.D() ~= 2
                error('Grid must be 2d cartesian');
            end

            obj.grid = grid;
            obj.alpha = alpha;
            obj.order = order;

            m_x = grid.m(1);
            m_y = grid.m(2);

            h = grid.scaling();
            h_x = h(1);
            h_y = h(2);

            ops_x = opsGen(m_x,h_x,order);
            ops_y = opsGen(m_y,h_y,order);

            I_x = speye(m_x);
            I_y = speye(m_y);

            D4_x = sparse(ops_x.derivatives.D4);
            H_x =  sparse(ops_x.norms.H);
            Hi_x = sparse(ops_x.norms.HI);
            e_l_x = sparse(ops_x.boundary.e_1);
            e_r_x = sparse(ops_x.boundary.e_m);
            d1_l_x = sparse(ops_x.boundary.S_1);
            d1_r_x = sparse(ops_x.boundary.S_m);
            d2_l_x  = sparse(ops_x.boundary.S2_1);
            d2_r_x  = sparse(ops_x.boundary.S2_m);
            d3_l_x  = sparse(ops_x.boundary.S3_1);
            d3_r_x  = sparse(ops_x.boundary.S3_m);

            D4_y = sparse(ops_y.derivatives.D4);
            H_y =  sparse(ops_y.norms.H);
            Hi_y = sparse(ops_y.norms.HI);
            e_l_y = sparse(ops_y.boundary.e_1);
            e_r_y = sparse(ops_y.boundary.e_m);
            d1_l_y = sparse(ops_y.boundary.S_1);
            d1_r_y = sparse(ops_y.boundary.S_m);
            d2_l_y  = sparse(ops_y.boundary.S2_1);
            d2_r_y  = sparse(ops_y.boundary.S2_m);
            d3_l_y  = sparse(ops_y.boundary.S3_1);
            d3_r_y  = sparse(ops_y.boundary.S3_m);


            D4 = kr(D4_x, I_y) + kr(I_x, D4_y);

            % Norms
            obj.H = kr(H_x,H_y);
            obj.Hx  = kr(H_x,I_x);
            obj.Hy  = kr(I_x,H_y);
            obj.Hix = kr(Hi_x,I_y);
            obj.Hiy = kr(I_x,Hi_y);
            obj.Hi = kr(Hi_x,Hi_y);

            % Boundary operators
            obj.e_w  = kr(e_l_x,I_y);
            obj.e_e  = kr(e_r_x,I_y);
            obj.e_s  = kr(I_x,e_l_y);
            obj.e_n  = kr(I_x,e_r_y);
            obj.d1_w = kr(d1_l_x,I_y);
            obj.d1_e = kr(d1_r_x,I_y);
            obj.d1_s = kr(I_x,d1_l_y);
            obj.d1_n = kr(I_x,d1_r_y);
            obj.d2_w = kr(d2_l_x,I_y);
            obj.d2_e = kr(d2_r_x,I_y);
            obj.d2_s = kr(I_x,d2_l_y);
            obj.d2_n = kr(I_x,d2_r_y);
            obj.d3_w = kr(d3_l_x,I_y);
            obj.d3_e = kr(d3_r_x,I_y);
            obj.d3_s = kr(I_x,d3_l_y);
            obj.d3_n = kr(I_x,d3_r_y);

            obj.D = alpha*D4;

            obj.gamm_x = h_x*ops_x.borrowing.N.S2/2;
            obj.delt_x = h_x^3*ops_x.borrowing.N.S3/2;

            obj.gamm_y = h_y*ops_y.borrowing.N.S2/2;
            obj.delt_y = h_y^3*ops_y.borrowing.N.S3/2;
        end


        % Closure functions return the opertors applied to the own doamin to close the boundary
        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition if there are several.
        %       data                is a function returning the data that should be applied at the boundary.
        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
        %       neighbour_boundary  is a string specifying which boundary to interface to.
        function [closure, penalty_e,penalty_d] = boundary_condition(obj,boundary,type,data)
            default_arg('type','dn');
            default_arg('data',0);

            [e,d1,d2,d3,s,gamm,delt,halfnorm_inv] = obj.get_boundary_ops(boundary);

            switch type
                % Dirichlet-neumann boundary condition
                case {'dn'}
                    alpha = obj.alpha;

                    % tau1 < -alpha^2/gamma
                    tuning = 1.1;

                    tau1 = tuning * alpha/delt;
                    tau4 = s*alpha;

                    sig2 = tuning * alpha/gamm;
                    sig3 = -s*alpha;

                    tau = tau1*e+tau4*d3;
                    sig = sig2*d1+sig3*d2;

                    closure = halfnorm_inv*(tau*e' + sig*d1');

                    pp_e = halfnorm_inv*tau;
                    pp_d = halfnorm_inv*sig;
                    switch class(data)
                        case 'double'
                            penalty_e = pp_e*data;
                            penalty_d = pp_d*data;
                        case 'function_handle'
                            penalty_e = @(t)pp_e*data(t);
                            penalty_d = @(t)pp_d*data(t);
                        otherwise
                            error('Wierd data argument!')
                    end

                % Unknown, boundary condition
                otherwise
                    error('No such boundary condition: type = %s',type);
            end
        end

        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary, type)
            % u denotes the solution in the own domain
            % v denotes the solution in the neighbour domain
            [e_u,d1_u,d2_u,d3_u,s_u,gamm_u,delt_u, halfnorm_inv] = obj.get_boundary_ops(boundary);
            [e_v,d1_v,d2_v,d3_v,s_v,gamm_v,delt_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary);

            tuning = 2;

            alpha_u = obj.alpha;
            alpha_v = neighbour_scheme.alpha;

            tau1 = ((alpha_u/2)/delt_u + (alpha_v/2)/delt_v)/2*tuning;
            % tau1 = (alpha_u/2 + alpha_v/2)/(2*delt_u)*tuning;
            tau4 = s_u*alpha_u/2;

            sig2 = ((alpha_u/2)/gamm_u + (alpha_v/2)/gamm_v)/2*tuning;
            sig3 = -s_u*alpha_u/2;

            phi2 = s_u*1/2;

            psi1 = -s_u*1/2;

            tau = tau1*e_u  +                     tau4*d3_u;
            sig =           sig2*d1_u + sig3*d2_u          ;
            phi =           phi2*d1_u                      ;
            psi = psi1*e_u                                 ;

            closure =  halfnorm_inv*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u');
            penalty = -halfnorm_inv*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v');
        end

        % Ruturns the boundary ops and sign for the boundary specified by the string boundary.
        % The right boundary is considered the positive boundary
        function [e,d1,d2,d3,s,gamm, delt, halfnorm_inv] = get_boundary_ops(obj,boundary)
            switch boundary
                case 'w'
                    e  = obj.e_w;
                    d1 = obj.d1_w;
                    d2 = obj.d2_w;
                    d3 = obj.d3_w;
                    s = -1;
                    gamm = obj.gamm_x;
                    delt = obj.delt_x;
                    halfnorm_inv = obj.Hix;
                case 'e'
                    e  = obj.e_e;
                    d1 = obj.d1_e;
                    d2 = obj.d2_e;
                    d3 = obj.d3_e;
                    s = 1;
                    gamm = obj.gamm_x;
                    delt = obj.delt_x;
                    halfnorm_inv = obj.Hix;
                case 's'
                    e  = obj.e_s;
                    d1 = obj.d1_s;
                    d2 = obj.d2_s;
                    d3 = obj.d3_s;
                    s = -1;
                    gamm = obj.gamm_y;
                    delt = obj.delt_y;
                    halfnorm_inv = obj.Hiy;
                case 'n'
                    e  = obj.e_n;
                    d1 = obj.d1_n;
                    d2 = obj.d2_n;
                    d3 = obj.d3_n;
                    s = 1;
                    gamm = obj.gamm_y;
                    delt = obj.delt_y;
                    halfnorm_inv = obj.Hiy;
                otherwise
                    error('No such boundary: boundary = %s',boundary);
            end
        end

        function N = size(obj)
            N = prod(obj.m);
        end

    end
end