Mercurial > repos > public > sbplib
view +scheme/Beam2d.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | a35ed1d124d3 |
children | 78db023a7fe3 |
line wrap: on
line source
classdef Beam2d < scheme.Scheme properties grid order % Order accuracy for the approximation D % non-stabalized scheme operator M % Derivative norm alpha H % Discrete norm Hi H_x, H_y % Norms in the x and y directions Hx,Hy % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. Hi_x, Hi_y Hix, Hiy e_w, e_e, e_s, e_n d1_w, d1_e, d1_s, d1_n d2_w, d2_e, d2_s, d2_n d3_w, d3_e, d3_s, d3_n gamm_x, gamm_y delt_x, delt_y end methods function obj = Beam2d(m,lim,order,alpha,opsGen) default_arg('alpha',1); default_arg('opsGen',@sbp.Higher); if ~isa(grid, 'grid.Cartesian') || grid.D() ~= 2 error('Grid must be 2d cartesian'); end obj.grid = grid; obj.alpha = alpha; obj.order = order; m_x = grid.m(1); m_y = grid.m(2); h = grid.scaling(); h_x = h(1); h_y = h(2); ops_x = opsGen(m_x,h_x,order); ops_y = opsGen(m_y,h_y,order); I_x = speye(m_x); I_y = speye(m_y); D4_x = sparse(ops_x.derivatives.D4); H_x = sparse(ops_x.norms.H); Hi_x = sparse(ops_x.norms.HI); e_l_x = sparse(ops_x.boundary.e_1); e_r_x = sparse(ops_x.boundary.e_m); d1_l_x = sparse(ops_x.boundary.S_1); d1_r_x = sparse(ops_x.boundary.S_m); d2_l_x = sparse(ops_x.boundary.S2_1); d2_r_x = sparse(ops_x.boundary.S2_m); d3_l_x = sparse(ops_x.boundary.S3_1); d3_r_x = sparse(ops_x.boundary.S3_m); D4_y = sparse(ops_y.derivatives.D4); H_y = sparse(ops_y.norms.H); Hi_y = sparse(ops_y.norms.HI); e_l_y = sparse(ops_y.boundary.e_1); e_r_y = sparse(ops_y.boundary.e_m); d1_l_y = sparse(ops_y.boundary.S_1); d1_r_y = sparse(ops_y.boundary.S_m); d2_l_y = sparse(ops_y.boundary.S2_1); d2_r_y = sparse(ops_y.boundary.S2_m); d3_l_y = sparse(ops_y.boundary.S3_1); d3_r_y = sparse(ops_y.boundary.S3_m); D4 = kr(D4_x, I_y) + kr(I_x, D4_y); % Norms obj.H = kr(H_x,H_y); obj.Hx = kr(H_x,I_x); obj.Hy = kr(I_x,H_y); obj.Hix = kr(Hi_x,I_y); obj.Hiy = kr(I_x,Hi_y); obj.Hi = kr(Hi_x,Hi_y); % Boundary operators obj.e_w = kr(e_l_x,I_y); obj.e_e = kr(e_r_x,I_y); obj.e_s = kr(I_x,e_l_y); obj.e_n = kr(I_x,e_r_y); obj.d1_w = kr(d1_l_x,I_y); obj.d1_e = kr(d1_r_x,I_y); obj.d1_s = kr(I_x,d1_l_y); obj.d1_n = kr(I_x,d1_r_y); obj.d2_w = kr(d2_l_x,I_y); obj.d2_e = kr(d2_r_x,I_y); obj.d2_s = kr(I_x,d2_l_y); obj.d2_n = kr(I_x,d2_r_y); obj.d3_w = kr(d3_l_x,I_y); obj.d3_e = kr(d3_r_x,I_y); obj.d3_s = kr(I_x,d3_l_y); obj.d3_n = kr(I_x,d3_r_y); obj.D = alpha*D4; obj.gamm_x = h_x*ops_x.borrowing.N.S2/2; obj.delt_x = h_x^3*ops_x.borrowing.N.S3/2; obj.gamm_y = h_y*ops_y.borrowing.N.S2/2; obj.delt_y = h_y^3*ops_y.borrowing.N.S3/2; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty_e,penalty_d] = boundary_condition(obj,boundary,type,data) default_arg('type','dn'); default_arg('data',0); [e,d1,d2,d3,s,gamm,delt,halfnorm_inv] = obj.get_boundary_ops(boundary); switch type % Dirichlet-neumann boundary condition case {'dn'} alpha = obj.alpha; % tau1 < -alpha^2/gamma tuning = 1.1; tau1 = tuning * alpha/delt; tau4 = s*alpha; sig2 = tuning * alpha/gamm; sig3 = -s*alpha; tau = tau1*e+tau4*d3; sig = sig2*d1+sig3*d2; closure = halfnorm_inv*(tau*e' + sig*d1'); pp_e = halfnorm_inv*tau; pp_d = halfnorm_inv*sig; switch class(data) case 'double' penalty_e = pp_e*data; penalty_d = pp_d*data; case 'function_handle' penalty_e = @(t)pp_e*data(t); penalty_d = @(t)pp_d*data(t); otherwise error('Wierd data argument!') end % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary, type) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u,d1_u,d2_u,d3_u,s_u,gamm_u,delt_u, halfnorm_inv] = obj.get_boundary_ops(boundary); [e_v,d1_v,d2_v,d3_v,s_v,gamm_v,delt_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); tuning = 2; alpha_u = obj.alpha; alpha_v = neighbour_scheme.alpha; tau1 = ((alpha_u/2)/delt_u + (alpha_v/2)/delt_v)/2*tuning; % tau1 = (alpha_u/2 + alpha_v/2)/(2*delt_u)*tuning; tau4 = s_u*alpha_u/2; sig2 = ((alpha_u/2)/gamm_u + (alpha_v/2)/gamm_v)/2*tuning; sig3 = -s_u*alpha_u/2; phi2 = s_u*1/2; psi1 = -s_u*1/2; tau = tau1*e_u + tau4*d3_u; sig = sig2*d1_u + sig3*d2_u ; phi = phi2*d1_u ; psi = psi1*e_u ; closure = halfnorm_inv*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u'); penalty = -halfnorm_inv*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v'); end % Ruturns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary function [e,d1,d2,d3,s,gamm, delt, halfnorm_inv] = get_boundary_ops(obj,boundary) switch boundary case 'w' e = obj.e_w; d1 = obj.d1_w; d2 = obj.d2_w; d3 = obj.d3_w; s = -1; gamm = obj.gamm_x; delt = obj.delt_x; halfnorm_inv = obj.Hix; case 'e' e = obj.e_e; d1 = obj.d1_e; d2 = obj.d2_e; d3 = obj.d3_e; s = 1; gamm = obj.gamm_x; delt = obj.delt_x; halfnorm_inv = obj.Hix; case 's' e = obj.e_s; d1 = obj.d1_s; d2 = obj.d2_s; d3 = obj.d3_s; s = -1; gamm = obj.gamm_y; delt = obj.delt_y; halfnorm_inv = obj.Hiy; case 'n' e = obj.e_n; d1 = obj.d1_n; d2 = obj.d2_n; d3 = obj.d3_n; s = 1; gamm = obj.gamm_y; delt = obj.delt_y; halfnorm_inv = obj.Hiy; otherwise error('No such boundary: boundary = %s',boundary); end end function N = size(obj) N = prod(obj.m); end end end