Mercurial > repos > public > sbplib
view +sbp/D1Gauss.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | e1d11b6a68d8 |
children |
line wrap: on
line source
classdef D1Gauss < sbp.OpSet % Diagonal-norm SBP operators based on the Gauss quadrature formula % with m nodes, which is of degree 2m-1. Hence, The operator D1 is % accurate of order m. properties D1 % SBP operator approximating first derivative H % Norm matrix HI % H^-1 Q % Skew-symmetric matrix e_l % Left boundary operator e_r % Right boundary operator m % Number of grid points. h % Step size x % grid borrowing % Struct with borrowing limits for different norm matrices end methods function obj = D1Gauss(m,lim) x_l = lim{1}; x_r = lim{2}; L = x_r-x_l; switch m case 4 [obj.D1,obj.H,obj.x,obj.h,obj.e_l,obj.e_r] = ... sbp.implementations.d1_gauss_4(L); otherwise error('Invalid number of points: %d.', m); end obj.x = obj.x + x_l; obj.HI = inv(obj.H); obj.Q = obj.H*obj.D1 - obj.e_r*obj.e_r' + obj.e_l*obj.e_l'; obj.borrowing = []; end function str = string(obj) str = [class(obj) '_' num2str(obj.order)]; end end end