Mercurial > repos > public > sbplib
view +sbp/+implementations/d4_variable_2.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | 43d02533bea3 |
children |
line wrap: on
line source
% Returns D2 as a function handle function [H, HI, D1, D2, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_2(m,h) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% 4:de ordn. SBP Finita differens %%% %%% operatorer framtagna av Ken Mattsson %%% %%% %%% %%% 6 randpunkter, diagonal norm %%% %%% %%% %%% Datum: 2013-11-11 %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BP = 2; if(m < 2*BP) error('Operator requires at least %d grid points', 2*BP); end % Norm Hv = ones(m,1); Hv(1) = 1/2; Hv(m) = 1/2; Hv = h*Hv; H = spdiag(Hv, 0); HI = spdiag(1./Hv, 0); % Boundary operators e_l = sparse(m,1); e_l(1) = 1; e_r = rot90(e_l, 2); d1_l = sparse(m,1); d1_l(1:3) = 1/h*[-3/2 2 -1/2]; d1_r = -rot90(d1_l, 2); d2_l = sparse(m,1); d2_l(1:3) = 1/h^2*[1 -2 1]; d2_r = rot90(d2_l, 2); d3_l = sparse(m,1); d3_l(1:4) = 1/h^3*[-1 3 -3 1]; d3_r = -rot90(d3_l, 2); % First derivative SBP operator, 1st order accurate at first 6 boundary points stencil = [-1/2, 0, 1/2]; diags = [-1 0 1]; Q = stripeMatrix(stencil, diags, m); D1 = HI*(Q - 1/2*e_l*e_l' + 1/2*e_r*e_r'); % Second derivative, 1st order accurate at first boundary points M = sparse(m,m); scheme_width = 3; scheme_radius = (scheme_width-1)/2; r = (1+scheme_radius):(m-scheme_radius); function D2 = D2_fun(c) Mm1 = -c(r-1)/2 - c(r)/2; M0 = c(r-1)/2 + c(r) + c(r+1)/2; Mp1 = -c(r)/2 - c(r+1)/2; M(r,:) = spdiags([Mm1 M0 Mp1],0:2*scheme_radius,length(r),m); M(1:2,1:2) = [c(1)/2 + c(2)/2 -c(1)/2 - c(2)/2; -c(1)/2 - c(2)/2 c(1)/2 + c(2) + c(3)/2;]; M(m-1:m,m-1:m) = [c(m-2)/2 + c(m-1) + c(m)/2 -c(m-1)/2 - c(m)/2; -c(m-1)/2 - c(m)/2 c(m-1)/2 + c(m)/2;]; M = 1/h*M; D2 = HI*(-M - c(1)*e_l*d1_l' + c(m)*e_r*d1_r'); end D2 = @D2_fun; % Fourth derivative, 0th order accurate at first 6 boundary points stencil = [1, -4, 6, -4, 1]; diags = -2:2; M4 = stripeMatrix(stencil, diags, m); M4_U = [ 0.13e2/0.10e2 -0.12e2/0.5e1 0.9e1/0.10e2 0.1e1/0.5e1; -0.12e2/0.5e1 0.26e2/0.5e1 -0.16e2/0.5e1 0.2e1/0.5e1; 0.9e1/0.10e2 -0.16e2/0.5e1 0.47e2/0.10e2 -0.17e2/0.5e1; 0.1e1/0.5e1 0.2e1/0.5e1 -0.17e2/0.5e1 0.29e2/0.5e1; ]; M4(1:4,1:4) = M4_U; M4(m-3:m,m-3:m) = rot90(M4_U, 2); M4 = 1/h^3*M4; D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r'); end