view +sbp/+implementations/d4_compatible_2.m @ 1031:2ef20d00b386 feature/advectionRV

For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:25:06 +0100
parents f7ac3cd6eeaa
children
line wrap: on
line source

function [H, HI, D1, D4, e_1, e_m, M4, Q, S2_1, S2_m,...
    S3_1, S3_m, S_1, S_m] = d4_compatible_2(m,h)
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %%% 4:de ordn. SBP Finita differens         %%%
    %%% operatorer framtagna av Ken Mattsson    %%%
    %%%                                         %%%
    %%% 6 randpunkter, diagonal norm            %%%
    %%%                                         %%%
    %%% Datum: 2013-11-11                       %%%
    %%%                                         %%%
    %%%                                         %%%
    %%% H           (Normen)                    %%%
    %%% D1          (approx f?rsta derivatan)   %%%
    %%% D2          (approx andra derivatan)    %%%
    %%% D3          (approx tredje derivatan)   %%%
    %%% D2          (approx fj?rde derivatan)   %%%
    %%%                                         %%%
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % M?ste ange antal punkter (m) och stegl?ngd (h)
    % Notera att dessa opetratorer ?r framtagna f?r att anv?ndas n?r
    % vi har 3de och 4de derivator i v?r PDE
    % I annat fall anv?nd de "traditionella" som har noggrannare
    % randsplutningar f?r D1 och D2

    % Vi b?rjar med normen. Notera att alla SBP operatorer delar samma norm,
    % vilket ?r n?dv?ndigt f?r stabilitet
    
    BP = 4;
    if(m<2*BP)
        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
    end

    H=speye(m,m);H(1,1)=1/2;H(m,m)=1/2;


    H=H*h;
    HI=inv(H);


    % First derivative SBP operator, 1st order accurate at first 6 boundary points

    q1=1/2;
%     Q=q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1));
    stencil = [-q1,0,q1];
    d = (length(stencil)-1)/2;
    diags = -d:d;
    Q = stripeMatrix(stencil, diags, m);

    %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2));


    e_1=sparse(m,1);e_1(1)=1;
    e_m=sparse(m,1);e_m(m)=1;


    D1=H\(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ;

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



    % Second derivative, 1st order accurate at first 6 boundary points
%     m1=-1;m0=2;
% %     M=m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0);M(1,1)=1;M(m,m)=1;
%     stencil = [m2,m1,m0,m1,m2];
%     d = (length(stencil)-1)/2;
%     diags = -d:d;
%     M = stripeMatrix(stencil, diags, m);
%     M=M/h;

    S_U=[-1 1]/h;
    S_1=sparse(1,m);
    S_1(1:2)=S_U;
    S_m=sparse(1,m);

    S_m(m-1:m)=fliplr(-S_U);

%     D2=H\(-M-e_1*S_1+e_m*S_m);


    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



    % Third derivative, 1st order accurate at first 6 boundary points

%     q2=1/2;q1=-1;
% %     Q3=q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1));
%     stencil = [-q2,-q1,0,q1,q2];
%     d = (length(stencil)-1)/2;
%     diags = -d:d;
%     Q3 = stripeMatrix(stencil, diags, m);

    %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3));


%     Q3_U = [0 -0.2e1 / 0.5e1 0.3e1 / 0.10e2 0.1e1 / 0.10e2; 0.2e1 / 0.5e1 0 -0.7e1 / 0.10e2 0.3e1 / 0.10e2; -0.3e1 / 0.10e2 0.7e1 / 0.10e2 0 -0.9e1 / 0.10e2; -0.1e1 / 0.10e2 -0.3e1 / 0.10e2 0.9e1 / 0.10e2 0;];
%     Q3(1:4,1:4)=Q3_U;
%     Q3(m-3:m,m-3:m)=rot90(  -Q3_U ,2 );
%     Q3=Q3/h^2;



    S2_U=[1 -2 1;]/h^2;
    S2_1=sparse(1,m);
    S2_1(1:3)=S2_U;
    S2_m=sparse(1,m);
    S2_m(m-2:m)=fliplr(S2_U);



%     D3=H\(Q3 - e_1*S2_1 + e_m*S2_m +1/2*(S_1'*S_1) -1/2*(S_m'*S_m) ) ;

    % Fourth derivative, 0th order accurate at first 6 boundary points (still
    % yield 4th order convergence if stable: for example u_tt=-u_xxxx

    m2=1;m1=-4;m0=6;
    M4=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0);

    %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0));

    M4_U=[0.4e1 / 0.5e1 -0.7e1 / 0.5e1 0.2e1 / 0.5e1 0.1e1 / 0.5e1; -0.7e1 / 0.5e1 0.16e2 / 0.5e1 -0.11e2 / 0.5e1 0.2e1 / 0.5e1; 0.2e1 / 0.5e1 -0.11e2 / 0.5e1 0.21e2 / 0.5e1 -0.17e2 / 0.5e1; 0.1e1 / 0.5e1 0.2e1 / 0.5e1 -0.17e2 / 0.5e1 0.29e2 / 0.5e1;];

    M4(1:4,1:4)=M4_U;

    M4(m-3:m,m-3:m)=rot90(  M4_U ,2 );
    M4=M4/h^3;

    S3_U=[-1 3 -3 1;]/h^3;
    S3_1=sparse(1,m);
    S3_1(1:4)=S3_U;
    S3_m=sparse(1,m);
    S3_m(m-3:m)=fliplr(-S3_U);

    D4=H\(M4-e_1*S3_1+e_m*S3_m  + S_1'*S2_1-S_m'*S2_m);



    S_1 = S_1';
    S_m = S_m';
    S2_1 = S2_1';
    S2_m = S2_m';
    S3_1 = S3_1';
    S3_m = S3_m';




    % L=h*(m-1);

    % x1=linspace(0,L,m)';
    % x2=x1.^2/fac(2);
    % x3=x1.^3/fac(3);
    % x4=x1.^4/fac(4);
    % x5=x1.^5/fac(5);

    % x0=x1.^0/fac(1);


end