Mercurial > repos > public > sbplib
view +sbp/+implementations/d1_gauss_4.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | 0bc37a25ed88 |
children |
line wrap: on
line source
function [D1,H,x,h,e_l,e_r] = d1_gauss_4(L) % L: Domain length default_arg('L',1); N = 4; % Quadrature nodes on interval [-1, 1] x = [ -0.8611363115940526; -0.3399810435848563; 0.3399810435848563; 0.8611363115940526]; % Shift nodes to [0,L] x = (x+1)/2*L; % Boundary extrapolation operators e_l = [1.5267881254572668; -0.8136324494869273; 0.4007615203116504; -0.1139171962819899]; e_r = flipud(e_l); e_l = sparse(e_l); e_r = sparse(e_r); %%%% Compute approximate h %%%%%%%%%% h = L/(N-1); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Norm matrix on [-1,1] %%%%%%%% P = sparse(N,N); P(1,1) = 0.3478548451374539; P(2,2) = 0.6521451548625461; P(3,3) = 0.6521451548625461; P(4,4) = 0.3478548451374539; %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Norm matrix on [0,L] %%%%%%%% H = P*L/2; %%%%%%%%%%%%%%%%%%%%%%%%% %%%% D1 on [-1,1] %%%%%%%% D1 = sparse(N,N); D1(1,1) = -3.3320002363522817; D1(1,2) = 4.8601544156851962; D1(1,3) = -2.1087823484951789; D1(1,4) = 0.5806281691622644; D1(2,1) = -0.7575576147992339; D1(2,2) = -0.3844143922232086; D1(2,3) = 1.4706702312807167; D1(2,4) = -0.3286982242582743; D1(3,1) = 0.3286982242582743; D1(3,2) = -1.4706702312807167; D1(3,3) = 0.3844143922232086; D1(3,4) = 0.7575576147992339; D1(4,1) = -0.5806281691622644; D1(4,2) = 2.1087823484951789; D1(4,3) = -4.8601544156851962; D1(4,4) = 3.3320002363522817; %%%%%%%%%%%%%%%%%%%%%%%%% % D1 on [0,L] D1 = D1*2/L;