view +sbp/+implementations/d1_gauss_4.m @ 1031:2ef20d00b386 feature/advectionRV

For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:25:06 +0100
parents 0bc37a25ed88
children
line wrap: on
line source

function [D1,H,x,h,e_l,e_r] = d1_gauss_4(L)

% L: Domain length
default_arg('L',1);

N = 4;

% Quadrature nodes on interval [-1, 1]
x = [ -0.8611363115940526; -0.3399810435848563; 0.3399810435848563; 0.8611363115940526];

% Shift nodes to [0,L]
x = (x+1)/2*L;

% Boundary extrapolation operators
e_l = [1.5267881254572668; -0.8136324494869273; 0.4007615203116504; -0.1139171962819899];
e_r = flipud(e_l);
e_l = sparse(e_l);
e_r = sparse(e_r);

%%%% Compute approximate h %%%%%%%%%%
h = L/(N-1);
%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Norm matrix on [-1,1] %%%%%%%%
P = sparse(N,N);
P(1,1) =  0.3478548451374539;
P(2,2) =  0.6521451548625461;
P(3,3) =  0.6521451548625461;
P(4,4) =  0.3478548451374539;
%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Norm matrix on [0,L] %%%%%%%%
H = P*L/2;
%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% D1 on [-1,1] %%%%%%%%
D1 = sparse(N,N);
D1(1,1) = -3.3320002363522817;
D1(1,2) = 4.8601544156851962;
D1(1,3) = -2.1087823484951789;
D1(1,4) = 0.5806281691622644;

D1(2,1) = -0.7575576147992339;
D1(2,2) = -0.3844143922232086;
D1(2,3) = 1.4706702312807167;
D1(2,4) = -0.3286982242582743;

D1(3,1) = 0.3286982242582743;
D1(3,2) = -1.4706702312807167;
D1(3,3) = 0.3844143922232086;
D1(3,4) = 0.7575576147992339;

D1(4,1) = -0.5806281691622644;
D1(4,2) = 2.1087823484951789;
D1(4,3) = -4.8601544156851962;
D1(4,4) = 3.3320002363522817;
%%%%%%%%%%%%%%%%%%%%%%%%%

% D1 on [0,L]
D1 = D1*2/L;