view +parametrization/old/triang_plot_interp.m @ 1031:2ef20d00b386 feature/advectionRV

For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:25:06 +0100
parents 3a3cf386bb7e
children
line wrap: on
line source

% Plots a transfinite interpolation in x,y space using nu and nv curves along u and v axes.






% Plots a interp of a triangle where one the interpolation is from a square
% with one side collapsed to
function h = triang_plot_interp_kindaworking(S,n)
    u = linspace(0,1,n);
    v = linspace(0,1,n);

    m = 100;
    m = 20;

    Xl_curves = cell(n,1);
    Xr_curves = cell(n,1);
    Y_curves = cell(n,1);


    function u = wierdness(v,d,N)
        if N == 0
            u = 0;
        else
            u = N*d./(1-v);
        end
    end


    %Y curves
    t = linspace(0,1,m);
    for i = 1:n
        x = []; y = [];
        for j = 1:length(t)
            [x(j),y(j)] = S(t(j),v(i));
        end
        Y_curves{i} = [x', y'];
    end


    % Right and left X curves
    t = linspace(0,1,m);
    d = u(2);
    for i = 1:n
        xl = []; yl = [];
        xr = []; yr = [];
        N = i-1;
        t = linspace(0,1-N*d,m);
        for j = 1:length(t)
            w = wierdness(t(j),d,N);
            [xr(j),yr(j)] = S(w,t(j));
            [xl(j),yl(j)] = S(1-w,t(j));
        end
        Xl_curves{i} = [xl', yl'];
        Xr_curves{i} = [xr', yr'];
    end

    for i = 1:n-1
        line(Xl_curves{i}(:,1),Xl_curves{i}(:,2))
        line(Xr_curves{i}(:,1),Xr_curves{i}(:,2))
        line(Y_curves{i}(:,1),Y_curves{i}(:,2))
    end
end




function h = triang_plot_interp_nonworking(S,n)

    u = linspace(0,1,n);
    v = linspace(0,1,n);

    m = 100;

    X_curves = cell(n-1,1);
    Y_curves = cell(n-1,1);
    K_curves = cell(n-1,1);


    t = linspace(0,1,m);
    for i = 1:n-1
        x = []; y = [];
        for j = find(t+u(i) <= 1)
            [x(j),y(j)] = S(u(i),t(j));
        end
        X_curves{i} = [x', y'];
    end

    for i = 1:n-1
        x = []; y = [];
        for j = find(t+v(i) <= 1)
            [x(j),y(j)] = S(t(j),v(i));
        end
        Y_curves{i} = [x', y'];
    end

    for i = 2:n
        x = []; y = [];
        for j = find(t<u(i))
            [x(j),y(j)] = S(t(j), u(i)-t(j));
        end
        K_curves{i-1} = [x', y'];
    end

    for i = 1:n-1
        line(X_curves{i}(:,1),X_curves{i}(:,2))
        line(Y_curves{i}(:,1),Y_curves{i}(:,2))
        line(K_curves{i}(:,1),K_curves{i}(:,2))
    end

    h = -1;
    % h = plot(X_curves{:},Y_curves{:},K_curves{:});
end