Mercurial > repos > public > sbplib
view +parametrization/old/triang_plot_interp.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | 3a3cf386bb7e |
children |
line wrap: on
line source
% Plots a transfinite interpolation in x,y space using nu and nv curves along u and v axes. % Plots a interp of a triangle where one the interpolation is from a square % with one side collapsed to function h = triang_plot_interp_kindaworking(S,n) u = linspace(0,1,n); v = linspace(0,1,n); m = 100; m = 20; Xl_curves = cell(n,1); Xr_curves = cell(n,1); Y_curves = cell(n,1); function u = wierdness(v,d,N) if N == 0 u = 0; else u = N*d./(1-v); end end %Y curves t = linspace(0,1,m); for i = 1:n x = []; y = []; for j = 1:length(t) [x(j),y(j)] = S(t(j),v(i)); end Y_curves{i} = [x', y']; end % Right and left X curves t = linspace(0,1,m); d = u(2); for i = 1:n xl = []; yl = []; xr = []; yr = []; N = i-1; t = linspace(0,1-N*d,m); for j = 1:length(t) w = wierdness(t(j),d,N); [xr(j),yr(j)] = S(w,t(j)); [xl(j),yl(j)] = S(1-w,t(j)); end Xl_curves{i} = [xl', yl']; Xr_curves{i} = [xr', yr']; end for i = 1:n-1 line(Xl_curves{i}(:,1),Xl_curves{i}(:,2)) line(Xr_curves{i}(:,1),Xr_curves{i}(:,2)) line(Y_curves{i}(:,1),Y_curves{i}(:,2)) end end function h = triang_plot_interp_nonworking(S,n) u = linspace(0,1,n); v = linspace(0,1,n); m = 100; X_curves = cell(n-1,1); Y_curves = cell(n-1,1); K_curves = cell(n-1,1); t = linspace(0,1,m); for i = 1:n-1 x = []; y = []; for j = find(t+u(i) <= 1) [x(j),y(j)] = S(u(i),t(j)); end X_curves{i} = [x', y']; end for i = 1:n-1 x = []; y = []; for j = find(t+v(i) <= 1) [x(j),y(j)] = S(t(j),v(i)); end Y_curves{i} = [x', y']; end for i = 2:n x = []; y = []; for j = find(t<u(i)) [x(j),y(j)] = S(t(j), u(i)-t(j)); end K_curves{i-1} = [x', y']; end for i = 1:n-1 line(X_curves{i}(:,1),X_curves{i}(:,2)) line(Y_curves{i}(:,1),Y_curves{i}(:,2)) line(K_curves{i}(:,1),K_curves{i}(:,2)) end h = -1; % h = plot(X_curves{:},Y_curves{:},K_curves{:}); end