view +parametrization/old/curve_interp.m @ 1031:2ef20d00b386 feature/advectionRV

For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:25:06 +0100
parents 3a3cf386bb7e
children
line wrap: on
line source

% Create a cubic spline from the points (x,y) using periodic conditions.
%   g = curve_interp(x,y)
function g = curve_interp(x,y)
    default_arg('x',[0 2 2 1 1 0])
    default_arg('y',[0 0 2 2 1 1])
    % solve for xp and yp

    % x(t) = at^4 + bt^2+ct+d

    % a = xp1 -2x1 + 2x0 +  xp0
    % b = 3x1 -xp1 - 3x0 + 2xp0
    % c = xp0
    % d = x0

    assert(length(x) == length(y))
    n = length(x);
    A = spdiags(ones(n,1)*[2, 8, 2],-1:1,n,n);
    A(n,1) = 2;
    A(1,n) = 2;

    bx = zeros(n,1);
    for i = 2:n-1
        bx(i) = -6*x(i-1)+6*x(i+1);
    end
    bx(1) = -6*x(n)+6*x(2);
    bx(n) = -6*x(n-1)+6*x(1);

    by = zeros(n,1);
    for i = 2:n-1
        by(i) = -6*y(i-1)+6*y(i+1);
    end
    by(1) = -6*y(n)+6*y(2);
    by(n) = -6*y(n-1)+6*y(1);


    xp = A\bx;
    yp = A\by;

    x(end+1) = x(1);
    y(end+1) = y(1);

    xp(end+1) = xp(1);
    yp(end+1) = yp(1);

    function v = g_fun(t)
        t = mod(t,1);
        i = mod(floor(t*n),n) + 1;
        t = t * n -(i-1);
        X = (2*x(i)-2*x(i+1)+xp(i)+xp(i+1))*t.^3 + (-3*x(i)+3*x(i+1)-2*xp(i)-xp(i+1))*t.^2 + (xp(i))*t + x(i);
        Y = (2*y(i)-2*y(i+1)+yp(i)+yp(i+1))*t.^3 + (-3*y(i)+3*y(i+1)-2*yp(i)-yp(i+1))*t.^2 + (yp(i))*t + y(i);
        v = [X;Y];
    end

    g = @g_fun;
end