view +parametrization/old/curve_discretise.m @ 1031:2ef20d00b386 feature/advectionRV

For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:25:06 +0100
parents 81e0ead29431
children
line wrap: on
line source

% Discretises the curve g with the smallest number of points such that all segments
% are shorter than h. If do_plot is true the points of the discretisation and
% the normals of the curve in those points are plotted.
%
%   [t,p,d] = curve_discretise(g,h,do_plot)
%
%   t is a vector of input values to g.
%   p is a cector of points.
%   d are the length of the segments.
function [t,p,d] = curve_discretise(g,h,do_plot)
    default_arg('do_plot',false)

    n = 10;

    [t,p,d] = curve_discretise_n(g,n);

    % ni = 0;
    while any(d>h)
        [t,p,d] = curve_discretise_n(g,n);
        n = ceil(n*d(1)/h);
        % ni = ni+1;
    end

    % nj = 0;
    while all(d<h)
        [t,p,d] = curve_discretise_n(g,n);
        n = n-1;
        % nj = nj+1;
    end
    [t,p,d] = curve_discretise_n(g,n+1);

    % fprintf('ni = %d, nj = %d\n',ni,nj);

    if do_plot
        fprintf('n:%d  max: %f min: %f\n', n, max(d),min(d));
        p = parametrization.map_curve(g,t);
        figure
        show(g,t,h);
    end

end

function [t,p,d] = curve_discretise_n(g,n)
    t = linspace(0,1,n);
    t = equalize_d(g,t);
    d = D(g,t);
    p = parametrization.map_curve(g,t);
end

function d = D(g,t)
    p = parametrization.map_curve(g,t);

    d = zeros(1,length(t)-1);
    for i = 1:length(d)
        d(i) = norm(p(:,i) - p(:,i+1));
    end
end

function t = equalize_d(g,t)
    d = D(g,t);
    v = d-mean(d);
    while any(abs(v)>0.01*mean(d))
        dt = t(2:end)-t(1:end-1);
        t(2:end) = t(2:end) - cumsum(dt.*v./d);

        t = t/t(end);
        d = D(g,t);
        v = d-mean(d);
    end
end


function show(g,t,hh)
    p = parametrization.map_curve(g,t);



    h = parametrization.plot_curve(g);
    h.LineWidth = 2;
    axis equal
    hold on
    h = plot(p(1,:),p(2,:),'.');
    h.Color = [0.8500 0.3250 0.0980];
    h.MarkerSize = 24;
    hold off

    n = parametrization.curve_normals(g,t);
    hold on
    for  i = 1:length(t)
        p0 = p(:,i);
        p1 = p0 + hh*n(:,i);
        l = [p0, p1];
        h = plot(l(1,:),l(2,:));
        h.Color = [0.8500 0.3250 0.0980];
    end

end