Mercurial > repos > public > sbplib
view +parametrization/Ti3D.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | eef74cd9b49c |
children |
line wrap: on
line source
classdef Ti3D properties gs % {6}Surfaces V % FunctionHandle(XI,ETA,ZETA) end methods % TODO write all fancy features for flipping around with the surfaces % Each surface is defined with an outward facing outward and choosing % the "corner" where XI=0 if not possible the corner where ETA=0 is choosen function obj = Ti3D(CW,CE,CS,CN,CB,CT) obj.gs = {CE,CW,CS,CN,CB,CT}; gw = CW.g; ge = CE.g; gs = CS.g; gn = CN.g; gb = CB.g; gt = CT.g; function o = V_fun(XI,ETA,ZETA) XI=XI'; ETA=ETA'; ZETA=ZETA'; one=0*ETA+1; zero=0*ETA; Sw = gw(ETA,(1-ZETA)); Se = ge((1-ETA),(1-ZETA)); Ss = gs(XI,ZETA); Sn = gn((1-XI),(1-ZETA)); Sb = gb((1-XI),ETA); St = gt(XI,ETA); Ewt = gw(ETA,zero); Ewb = gw(ETA,one); Ews = gw(zero,1-ZETA); Ewn = gw(one,1-ZETA); Eet = ge(1-ETA,zero); Eeb = ge(1-ETA,one); Ees = ge(one,1-ZETA); Een = ge(zero,1-ZETA); Enb = gn(1-XI,one); Ent = gn(1-XI,zero); Est = gs(XI,one); Esb = gs(XI,zero); Cwbs = gw(zero,one); Cwbn = gw(one,one); Cwts = gw(zero,zero); Cwtn = gw(one,zero); Cebs = ge(one,one); Cebn = ge(zero,one); Cets = ge(one,zero); Cetn = ge(zero,zero); X1 = (1-XI).*Sw(1,:,:) + XI.*Se(1,:,:); X2 = (1-ETA).*Ss(1,:,:) + ETA.*Sn(1,:,:); X3 = (1-ZETA).*Sb(1,:,:) + ZETA.*St(1,:,:); X12 = (1-XI).*(1-ETA).*Ews(1,:,:) + (1-XI).*ETA.*Ewn(1,:,:) + XI.*(1-ETA).*Ees(1,:,:) + XI.*ETA.*Een(1,:,:); X13 = (1-XI).*(1-ZETA).*Ewb(1,:,:) + (1-XI).*ZETA.*Ewt(1,:,:) + XI.*(1-ZETA).*Eeb(1,:,:) + XI.*ZETA.*Eet(1,:,:); X23 = (1-ETA).*(1-ZETA).*Esb(1,:,:) + (1-ETA).*ZETA.*Est(1,:,:) + ETA.*(1-ZETA).*Enb(1,:,:) + ETA.*ZETA.*Ent(1,:,:); X123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(1,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(1,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(1,:,:) + ... (1-XI).*ETA.*ZETA.*Cwtn(1,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(1,:,:) + XI.*(1-ETA).*ZETA.*Cets(1,:,:) + ... XI.*ETA.*(1-ZETA).*Cebn(1,:,:) + XI.*ETA.*ZETA.*Cetn(1,:,:); X = X1 + X2 + X3 - X12 - X13 - X23 + X123; Y1 = (1-XI).*Sw(2,:,:) + XI.*Se(2,:,:); Y2 = (1-ETA).*Ss(2,:,:) + ETA.*Sn(2,:,:); Y3 = (1-ZETA).*Sb(2,:,:) + ZETA.*St(2,:,:); Y12 = (1-XI).*(1-ETA).*Ews(2,:,:) + (1-XI).*ETA.*Ewn(2,:,:) + XI.*(1-ETA).*Ees(2,:,:) + XI.*ETA.*Een(2,:,:); Y13 = (1-XI).*(1-ZETA).*Ewb(2,:,:) + (1-XI).*ZETA.*Ewt(2,:,:) + XI.*(1-ZETA).*Eeb(2,:,:) + XI.*ZETA.*Eet(2,:,:); Y23 = (1-ETA).*(1-ZETA).*Esb(2,:,:) + (1-ETA).*ZETA.*Est(2,:,:) + ETA.*(1-ZETA).*Enb(2,:,:) + ETA.*ZETA.*Ent(2,:,:); Y123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(2,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(2,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(2,:,:) + ... (1-XI).*ETA.*ZETA.*Cwtn(2,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(2,:,:) + XI.*(1-ETA).*ZETA.*Cets(2,:,:) + ... XI.*ETA.*(1-ZETA).*Cebn(2,:,:) + XI.*ETA.*ZETA.*Cetn(2,:,:); Y = Y1 + Y2 + Y3 - Y12 - Y13 - Y23 + Y123; Z1 = (1-XI).*Sw(3,:,:) + XI.*Se(3,:,:); Z2 = (1-ETA).*Ss(3,:,:) + ETA.*Sn(3,:,:); Z3 = (1-ZETA).*Sb(3,:,:) + ZETA.*St(3,:,:); Z12 = (1-XI).*(1-ETA).*Ews(3,:,:) + (1-XI).*ETA.*Ewn(3,:,:) + XI.*(1-ETA).*Ees(3,:,:) + XI.*ETA.*Een(3,:,:); Z13 = (1-XI).*(1-ZETA).*Ewb(3,:,:) + (1-XI).*ZETA.*Ewt(3,:,:) + XI.*(1-ZETA).*Eeb(3,:,:) + XI.*ZETA.*Eet(3,:,:); Z23 = (1-ETA).*(1-ZETA).*Esb(3,:,:) + (1-ETA).*ZETA.*Est(3,:,:) + ETA.*(1-ZETA).*Enb(3,:,:) + ETA.*ZETA.*Ent(3,:,:); Z123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(3,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(3,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(3,:,:) + ... (1-XI).*ETA.*ZETA.*Cwtn(3,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(3,:,:) + XI.*(1-ETA).*ZETA.*Cets(3,:,:) + ... XI.*ETA.*(1-ZETA).*Cebn(3,:,:) + XI.*ETA.*ZETA.*Cetn(3,:,:); Z = Z1 + Z2 + Z3 - Z12 - Z13 - Z23 + Z123; o = [X;Y;Z]; end obj.V = @V_fun; end %Should be rewritten so that the input is xi eta zeta function [X,Y,Z] = map(obj,XI,ETA,ZETA) V = obj.V; p = V(XI,ETA,ZETA); X = p(1,:)'; Y = p(2,:)'; Z = p(3,:)'; end % function h = plot(obj,nu,nv) % S = obj.S; % % default_arg('nv',nu) % % u = linspace(0,1,nu); % v = linspace(0,1,nv); % % m = 100; % % X = zeros(nu+nv,m); % Y = zeros(nu+nv,m); % % % t = linspace(0,1,m); % for i = 1:nu % p = S(u(i),t); % X(i,:) = p(1,:); % Y(i,:) = p(2,:); % end % % for i = 1:nv % p = S(t,v(i)); % X(i+nu,:) = p(1,:); % Y(i+nu,:) = p(2,:); % end % % h = line(X',Y'); % end % % % function h = show(obj,nu,nv) % default_arg('nv',nu) % S = obj.S; % % if(nu>2 || nv>2) % h_grid = obj.plot(nu,nv); % set(h_grid,'Color',[0 0.4470 0.7410]); % end % % h_bord = obj.plot(2,2); % set(h_bord,'Color',[0.8500 0.3250 0.0980]); % set(h_bord,'LineWidth',2); % end % % % % TRANSFORMATIONS % function ti = translate(obj,a) % gs = obj.gs; % % for i = 1:length(gs) % new_gs{i} = gs{i}.translate(a); % end % % ti = grid.Ti(new_gs{:}); % end % % % Mirrors the Ti so that the resulting Ti is still left handed. % % (Corrected by reversing curves and switching e and w) % function ti = mirror(obj, a, b) % gs = obj.gs; % % new_gs = cell(1,4); % % new_gs{1} = gs{1}.mirror(a,b).reverse(); % new_gs{3} = gs{3}.mirror(a,b).reverse(); % new_gs{2} = gs{4}.mirror(a,b).reverse(); % new_gs{4} = gs{2}.mirror(a,b).reverse(); % % ti = grid.Ti(new_gs{:}); % end % % function ti = rotate(obj,a,rad) % gs = obj.gs; % % for i = 1:length(gs) % new_gs{i} = gs{i}.rotate(a,rad); % end % % ti = grid.Ti(new_gs{:}); % end % % function ti = rotate_edges(obj,n); % new_gs = cell(1,4); % for i = 0:3 % new_i = mod(i - n,4); % new_gs{new_i+1} = obj.gs{i+1}; % end % ti = grid.Ti(new_gs{:}); % end % end % % methods(Static) % function obj = points(p1, p2, p3, p4) % g1 = grid.Curve.line(p1,p2); % g2 = grid.Curve.line(p2,p3); % g3 = grid.Curve.line(p3,p4); % g4 = grid.Curve.line(p4,p1); % % obj = grid.Ti(g1,g2,g3,g4); % end % % function label(varargin) % if nargin == 2 && ischar(varargin{2}) % label_impl(varargin{:}); % else % for i = 1:length(varargin) % label_impl(varargin{i},inputname(i)); % end % end % % % function label_impl(ti,str) % S = ti.S; % % pc = S(0.5,0.5); % % margin = 0.1; % pw = S( margin, 0.5); % pe = S(1-margin, 0.5); % ps = S( 0.5, margin); % pn = S( 0.5, 1-margin); % % % ti.show(2,2); % grid.place_label(pc,str); % grid.place_label(pw,'w'); % grid.place_label(pe,'e'); % grid.place_label(ps,'s'); % grid.place_label(pn,'n'); % end % end end end