Mercurial > repos > public > sbplib
view +noname/calculateSolution.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | bd99ea1fc733 |
children |
line wrap: on
line source
% Calculates the solution of discretization for a given set of ms ts and orders. % discrHand -- function handle to a Discretization constructor % m -- grid parameter % order -- order of accuracy of the approximtion % T -- time to calculate solution for % tsOpt -- options for the time stepper creation. % input paramters m, t, order may all be vectors. function [] = calculateSolution(filename, name, discrHand, m, T_in, order, tsOpt, force_flag) default_arg('force_flag',false); default_arg('tsOpt', []); if exist(filename,'file') && ~force_flag fprintf('File ''%s'' already exist.',filename); do_append = yesnoQuestion('Do you want to append to it?'); if ~do_append fprintf('Exiting. No Solutions calculated.\n'); return end end sf = SolutionFile(filename); orderWidth = findFieldWidth('%d',order); mWidth = findFieldWidth('%d',m); TWidth = findFieldWidth('%d',T_in); for i = 1:length(order) for j = 1:length(m) T = sort(T_in); % Make sure times are sorted discr = discrHand(m(j),order(i)); k_max = discr.getTimestep(tsOpt); % Do we want to to save the initial conditions? if T(1) == 0 snapshot = discr.getTimeSnapshot(0); saveToFile(sf, name, order(i), m(j),T(1), snapshot, NaN, NaN, discr); T(1) = []; end % Find out if times to be calulated are integer multiples of the smallest one. time_multiples = T/T(1); is_int_multiples = all(time_multiples == int64(time_multiples)); if is_int_multiples fprintf('Calculating time series in increments\n'); else fprintf('RESTARTING for each time in timeseries\n'); fprintf('If this is not what you want try giving T in integer multiples.\n'); end % T now contains all the times we need to step to, % if T contained 0 it has now been removed. if is_int_multiples % Times are integer multiples, we can save time [k,N] = alignedTimestep(k_max,T(1)); tsOpt.k = k; ts = discr.getTimestepper(tsOpt); runtime = 0; for l = 1:length(T) end_step = N * time_multiples(l); fprintf('[order = %-*d, m = %-*d, T = %-*d]: ',orderWidth,order(i),mWidth,m(j),TWidth,T(l)); clock_start = tic(); ts.stepN(end_step-ts.n,true); runtime = runtime + toc(clock_start); snapshot = discr.getTimeSnapshot(ts); saveToFile(sf, name, order(i), m(j),T(l), snapshot, runtime, k, discr); fprintf('Done! (%.3fs)\n',runtime); end else % Times are not interger multiples, we have to start from 0 every time. for l = 1:length(T) [k,N] = alignedTimestep(k_max,T(l)); tsOpt.k = k; ts = discr.getTimestepper(tsOpt); fprintf('[order = %-*d, m = %-*d, T = %-*d]: ',orderWidth,order(i),mWidth,m(j),TWidth,T(l)); clock_start = tic(); [v,t] = ts.stepN(N-ts.n,true); runtime = toc(clock_start); snapshot = discr.getTimeSnapshot(ts); saveToFile(sf, name, order(i), m(j),T(l), snapshot, runtime, k, discr); fprintf('Done! (%.3fs)\n',runtime); end end sf.stupidSave(); end end end function saveToFile(sf, name, order, m, T, snapshot, runtime, k, discr) key.name = name; key.order = order; key.m = m; key.T = T; entry.repr = snapshot; entry.runtime = runtime; entry.k = k; entry.discr = discr; sf.store(key,entry); end