Mercurial > repos > public > sbplib
view +noname/calculateErrors.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | 1201eb16557e |
children |
line wrap: on
line source
% [discr, trueSolution] = schemeFactory(m) % where trueSolution should be a timeSnapshot of the true solution a time T % T is the end time % m are grid size parameters. % N are number of timesteps to use for each gird size % timeOpt are options for the timeStepper % errorFun is a function_handle taking 2 or 3 arguments, errorFun(trueSolution, approxSolution), errorFun(trueSolution, approxSolution, discr) function e = calculateErrors(schemeFactory, T, m, N, errorFun, timeOpt) %TODO: Ability to choose paralell or not assertType(schemeFactory, 'function_handle'); assertNumberOfArguments(schemeFactory, 1); assertScalar(T); assert(length(m) == length(N), 'Vectors m and N must have the same length'); assertType(errorFun, 'function_handle'); if ~ismember(nargin(errorFun), [2,3]) error('sbplib:noname:calculateErrors:wrongNumberOfArguments', '"%s" must have 2 or 3, found %d', toString(errorFun), nargin(errorFun)); end default_arg('timeOpt', struct()); e = zeros(1,length(m)); parfor i = 1:length(m) done = timeTask('m = %3d ', m(i)); [discr, trueSolution] = schemeFactory(m(i)); timeOptTemp = timeOpt; timeOptTemp.k = T/N(i); ts = discr.getTimestepper(timeOptTemp); ts.stepTo(N(i), true); approxSolution = discr.getTimeSnapshot(ts); switch nargin(errorFun) case 2 e(i) = errorFun(trueSolution, approxSolution); case 3 e(i) = errorFun(trueSolution, approxSolution, discr); end fprintf('e = %.4e', e(i)) done() end fprintf('\n') end %% Example error function % u_true = grid.evalOn(dr.grid, @(x,y)trueSolution(T,x,y)); % err = u_true-u_false; % e(i) = norm(err)/norm(u_true); % % e(i) = sqrt(err'*d.H*d.J*err/(u_true'*d.H*d.J*u_true));