view +noname/calculateErrors.m @ 1031:2ef20d00b386 feature/advectionRV

For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:25:06 +0100
parents 1201eb16557e
children
line wrap: on
line source

% [discr, trueSolution] =  schemeFactory(m)
%     where trueSolution should be a timeSnapshot of the true solution a time T
% T is the end time
% m are grid size parameters.
% N are number of timesteps to use for each gird size
% timeOpt are options for the timeStepper
% errorFun is a function_handle taking 2 or 3 arguments, errorFun(trueSolution, approxSolution), errorFun(trueSolution, approxSolution, discr)
function e = calculateErrors(schemeFactory, T, m, N, errorFun, timeOpt)
    %TODO: Ability to choose paralell or not
    assertType(schemeFactory, 'function_handle');
    assertNumberOfArguments(schemeFactory, 1);
    assertScalar(T);
    assert(length(m) == length(N), 'Vectors m and N must have the same length');
    assertType(errorFun, 'function_handle');

    if ~ismember(nargin(errorFun), [2,3])
        error('sbplib:noname:calculateErrors:wrongNumberOfArguments', '"%s" must have 2 or 3, found %d', toString(errorFun), nargin(errorFun));
    end

    default_arg('timeOpt', struct());


    e = zeros(1,length(m));
    parfor i = 1:length(m)
        done = timeTask('m = %3d ', m(i));

        [discr, trueSolution] = schemeFactory(m(i));

        timeOptTemp = timeOpt;
        timeOptTemp.k = T/N(i);
        ts = discr.getTimestepper(timeOptTemp);
        ts.stepTo(N(i), true);
        approxSolution = discr.getTimeSnapshot(ts);

        switch nargin(errorFun)
            case 2
                e(i) = errorFun(trueSolution, approxSolution);
            case 3
                e(i) = errorFun(trueSolution, approxSolution, discr);
        end

        fprintf('e = %.4e', e(i))
        done()
    end
    fprintf('\n')
end


%% Example error function
% u_true = grid.evalOn(dr.grid, @(x,y)trueSolution(T,x,y));
% err = u_true-u_false;
% e(i) = norm(err)/norm(u_true);
% % e(i) = sqrt(err'*d.H*d.J*err/(u_true'*d.H*d.J*u_true));