view +multiblock/+domain/Circle.m @ 1031:2ef20d00b386 feature/advectionRV

For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:25:06 +0100
parents 9be370486d36
children
line wrap: on
line source

classdef Circle < multiblock.DefCurvilinear
    properties
        r, c

        hs
        r_arc
        omega
    end

    methods
        function obj = Circle(r, c, hs)
            default_arg('r', 1);
            default_arg('c', [0; 0]);
            default_arg('hs', 0.435);


            % alpha = 0.75;
            % hs = alpha*r/sqrt(2);

            % Square should not be a square, it should be an arc. The arc radius
            % is chosen so that the three angles of the meshes are all equal.
            % This gives that the (half)arc opening angle of should be omega = pi/12
            omega = pi/12;
            r_arc = hs*(2*sqrt(2))/(sqrt(3)-1); %  = hs* 1/sin(omega)
            c_arc = c - [(1/(2-sqrt(3))-1)*hs; 0];

            cir = parametrization.Curve.circle(c,r,[-pi/4 pi/4]);

            c2 = cir(0);
            c3 = cir(1);

            s1 = [-hs; -hs];
            s2 = [ hs; -hs];
            s3 = [ hs;  hs];
            s4 = [-hs;  hs];

            sp2 = parametrization.Curve.line(s2,c2);
            sp3 = parametrization.Curve.line(s3,c3);

            Se1 = parametrization.Curve.circle(c_arc,r_arc,[-omega, omega]);
            Se2 = Se1.rotate(c,pi/2);
            Se3 = Se2.rotate(c,pi/2);
            Se4 = Se3.rotate(c,pi/2);


            S = parametrization.Ti(Se1,Se2,Se3,Se4).rotate_edges(-1);

            A = parametrization.Ti(sp2, cir, sp3.reverse, Se1.reverse);
            B = A.rotate(c,1*pi/2).rotate_edges(-1);
            C = A.rotate(c,2*pi/2).rotate_edges(-1);
            D = A.rotate(c,3*pi/2).rotate_edges(0);

            blocks = {S,A,B,C,D};
            blocksNames = {'S','A','B','C','D'};

            conn = cell(5,5);
            conn{1,2} = {'e','w'};
            conn{1,3} = {'n','s'};
            conn{1,4} = {'w','s'};
            conn{1,5} = {'s','w'};

            conn{2,3} = {'n','e'};
            conn{3,4} = {'w','e'};
            conn{4,5} = {'w','s'};
            conn{5,2} = {'n','s'};

            boundaryGroups = struct();
            boundaryGroups.E = multiblock.BoundaryGroup({{2,'e'}});
            boundaryGroups.N = multiblock.BoundaryGroup({{3,'n'}});
            boundaryGroups.W = multiblock.BoundaryGroup({{4,'n'}});
            boundaryGroups.S = multiblock.BoundaryGroup({{5,'e'}});
            boundaryGroups.all = multiblock.BoundaryGroup({{2,'e'},{3,'n'},{4,'n'},{5,'e'}});

            obj = obj@multiblock.DefCurvilinear(blocks, conn, boundaryGroups, blocksNames);

            obj.r     = r;
            obj.c     = c;
            obj.hs    = hs;
            obj.r_arc = r_arc;
            obj.omega = omega;
        end

        function ms = getGridSizes(obj, m)
            m_S = m;

            % m_Radial
            s = 2*obj.hs;
            innerArc = obj.r_arc*obj.omega;
            outerArc = obj.r*pi/2;
            shortSpoke = obj.r-s/sqrt(2);
            x = (1/(2-sqrt(3))-1)*obj.hs;
            longSpoke =  (obj.r+x)-obj.r_arc;
            m_R = parametrization.equal_step_size((innerArc+outerArc)/2, m_S, (shortSpoke+longSpoke)/2);

            ms = {[m_S m_S], [m_R m_S], [m_S m_R], [m_S m_R], [m_R m_S]};
        end
    end
end