Mercurial > repos > public > sbplib
view +multiblock/+domain/Circle.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | 9be370486d36 |
children |
line wrap: on
line source
classdef Circle < multiblock.DefCurvilinear properties r, c hs r_arc omega end methods function obj = Circle(r, c, hs) default_arg('r', 1); default_arg('c', [0; 0]); default_arg('hs', 0.435); % alpha = 0.75; % hs = alpha*r/sqrt(2); % Square should not be a square, it should be an arc. The arc radius % is chosen so that the three angles of the meshes are all equal. % This gives that the (half)arc opening angle of should be omega = pi/12 omega = pi/12; r_arc = hs*(2*sqrt(2))/(sqrt(3)-1); % = hs* 1/sin(omega) c_arc = c - [(1/(2-sqrt(3))-1)*hs; 0]; cir = parametrization.Curve.circle(c,r,[-pi/4 pi/4]); c2 = cir(0); c3 = cir(1); s1 = [-hs; -hs]; s2 = [ hs; -hs]; s3 = [ hs; hs]; s4 = [-hs; hs]; sp2 = parametrization.Curve.line(s2,c2); sp3 = parametrization.Curve.line(s3,c3); Se1 = parametrization.Curve.circle(c_arc,r_arc,[-omega, omega]); Se2 = Se1.rotate(c,pi/2); Se3 = Se2.rotate(c,pi/2); Se4 = Se3.rotate(c,pi/2); S = parametrization.Ti(Se1,Se2,Se3,Se4).rotate_edges(-1); A = parametrization.Ti(sp2, cir, sp3.reverse, Se1.reverse); B = A.rotate(c,1*pi/2).rotate_edges(-1); C = A.rotate(c,2*pi/2).rotate_edges(-1); D = A.rotate(c,3*pi/2).rotate_edges(0); blocks = {S,A,B,C,D}; blocksNames = {'S','A','B','C','D'}; conn = cell(5,5); conn{1,2} = {'e','w'}; conn{1,3} = {'n','s'}; conn{1,4} = {'w','s'}; conn{1,5} = {'s','w'}; conn{2,3} = {'n','e'}; conn{3,4} = {'w','e'}; conn{4,5} = {'w','s'}; conn{5,2} = {'n','s'}; boundaryGroups = struct(); boundaryGroups.E = multiblock.BoundaryGroup({{2,'e'}}); boundaryGroups.N = multiblock.BoundaryGroup({{3,'n'}}); boundaryGroups.W = multiblock.BoundaryGroup({{4,'n'}}); boundaryGroups.S = multiblock.BoundaryGroup({{5,'e'}}); boundaryGroups.all = multiblock.BoundaryGroup({{2,'e'},{3,'n'},{4,'n'},{5,'e'}}); obj = obj@multiblock.DefCurvilinear(blocks, conn, boundaryGroups, blocksNames); obj.r = r; obj.c = c; obj.hs = hs; obj.r_arc = r_arc; obj.omega = omega; end function ms = getGridSizes(obj, m) m_S = m; % m_Radial s = 2*obj.hs; innerArc = obj.r_arc*obj.omega; outerArc = obj.r*pi/2; shortSpoke = obj.r-s/sqrt(2); x = (1/(2-sqrt(3))-1)*obj.hs; longSpoke = (obj.r+x)-obj.r_arc; m_R = parametrization.equal_step_size((innerArc+outerArc)/2, m_S, (shortSpoke+longSpoke)/2); ms = {[m_S m_S], [m_R m_S], [m_S m_R], [m_S m_R], [m_R m_S]}; end end end