view +grid/equidistantCurvilinear.m @ 1031:2ef20d00b386 feature/advectionRV

For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:25:06 +0100
parents 9eff7b58c5f7
children
line wrap: on
line source

% Creates a curvilinear grid of dimension length(m).
% over the logical domain xi_lim, eta_lim, ...
% If all limits are ommited they are set to {0,1}.
% Examples:
%   g = grid.equidistantCurvilinear(mapping, [m_xi, m_eta])
%   g = grid.equidistantCurvilinear(mapping, [m_xi, m_eta], xi_lim, eta_lim)
%   g = grid.equidistantCurvilinear(mapping, [10, 15], {0,1}, {0,1})
function g = equidistantCurvilinear(mapping, m, varargin)
    if isempty(varargin)
        varargin = repmat({{0,1}}, [1 length(m)]);
    end

    if length(m) ~= length(varargin)
        error('grid:equidistant:NonMatchingParameters','The number of provided dimensions do not match.')
    end

    for i = 1:length(m)
        if ~iscell(varargin{i}) || numel(varargin{i}) ~= 2
           error('grid:equidistant:InvalidLimits','The limits should be cell arrays with 2 elements.');
        end

        if varargin{i}{1} > varargin{i}{2}
            error('grid:equidistant:InvalidLimits','The elements of the limit must be increasing.');
        end
    end

    X = {};
    h = [];
    for i = 1:length(m)
        [X{i}, h(i)] = util.get_grid(varargin{i}{:},m(i));
    end

    g = grid.Curvilinear(mapping, X{:});
    g.logic.h = h;
end