Mercurial > repos > public > sbplib
view +grid/equidistantCurvilinear.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | 9eff7b58c5f7 |
children |
line wrap: on
line source
% Creates a curvilinear grid of dimension length(m). % over the logical domain xi_lim, eta_lim, ... % If all limits are ommited they are set to {0,1}. % Examples: % g = grid.equidistantCurvilinear(mapping, [m_xi, m_eta]) % g = grid.equidistantCurvilinear(mapping, [m_xi, m_eta], xi_lim, eta_lim) % g = grid.equidistantCurvilinear(mapping, [10, 15], {0,1}, {0,1}) function g = equidistantCurvilinear(mapping, m, varargin) if isempty(varargin) varargin = repmat({{0,1}}, [1 length(m)]); end if length(m) ~= length(varargin) error('grid:equidistant:NonMatchingParameters','The number of provided dimensions do not match.') end for i = 1:length(m) if ~iscell(varargin{i}) || numel(varargin{i}) ~= 2 error('grid:equidistant:InvalidLimits','The limits should be cell arrays with 2 elements.'); end if varargin{i}{1} > varargin{i}{2} error('grid:equidistant:InvalidLimits','The elements of the limit must be increasing.'); end end X = {}; h = []; for i = 1:length(m) [X{i}, h(i)] = util.get_grid(varargin{i}{:},m(i)); end g = grid.Curvilinear(mapping, X{:}); g.logic.h = h; end