view +grid/equidistant.m @ 1031:2ef20d00b386 feature/advectionRV

For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:25:06 +0100
parents c3378418d49a
children
line wrap: on
line source

% Creates a cartesian grid of dimension length(m).
% over the doman xlim, ylim, ...
% Examples:
%   g = grid.equidistant([mx, my], xlim, ylim)
%   g = grid.equidistant([10, 15], {0,1}, {0,2})
function g = equidistant(m, varargin)
    if length(m) ~= length(varargin)
        error('grid:equidistant:NonMatchingParameters','The number of provided dimensions do not match.')
    end

    for i = 1:length(m)
        if ~iscell(varargin{i}) || numel(varargin{i}) ~= 2
           error('grid:equidistant:InvalidLimits','The limits should be cell arrays with 2 elements.');
        end

        if varargin{i}{1} > varargin{i}{2}
            error('grid:equidistant:InvalidLimits','The elements of the limit must be increasing.');
        end
    end

    X = {};
    h = [];
    for i = 1:length(m)
        [X{i}, h(i)] = util.get_grid(varargin{i}{:},m(i));
    end

    g = grid.Cartesian(X{:});
    g.h = h;
end